
Boost.Graph Cookbook 1: Basics

Richèl J.C. Bilderbeek

October 13, 2022

2

Contents

1 Introduction 9
1.1 Why this tutorial . 9
1.2 Tutorial style . 9
1.3 Coding style . 10
1.4 License . 11
1.5 Feedback . 12
1.6 Acknowledgements . 12
1.7 Outline . 12

2 Building graphs without properties 15
2.1 Creating an empty (directed) graph 17
2.2 Creating an empty undirected graph 18
2.3 Counting the number of vertices 19
2.4 Counting the number of edges . 20
2.5 Adding a vertex . 21
2.6 Vertex descriptors . 22
2.7 Get the vertex iterators . 23
2.8 Get all vertex descriptors . 24
2.9 Add an edge . 25
2.10 boost::add_edge result . 26
2.11 Getting the edge iterators . 26
2.12 Edge descriptors . 28
2.13 Get all edge descriptors . 28
2.14 Creating a directed graph . 29

2.14.1 Function to create such a graph 29
2.14.2 Creating such a graph . 30
2.14.3 The .dot file produced . 30
2.14.4 The .svg file produced . 31

2.15 Creating K2, a fully connected undirected graph with two vertices 31
2.15.1 Function to create such a graph 31
2.15.2 Creating such a graph . 32
2.15.3 The .dot file produced . 32
2.15.4 The .svg file produced . 33

3

4 CONTENTS

2.16 △ Creating K3, a fully connected undirected graph with three
vertices . 33
2.16.1 Graph . 33
2.16.2 Function to create such a graph 34
2.16.3 Creating such a graph . 34
2.16.4 The .dot file produced . 35
2.16.5 The .svg file produced . 35

2.17 △ Creating a path graph . 36
2.17.1 Graph . 36
2.17.2 Function to create such a graph 36
2.17.3 Creating such a graph . 36
2.17.4 The .dot file produced . 37
2.17.5 The .svg file produced . 37

2.18 △ Creating a Peterson graph . 37
2.18.1 Graph . 37
2.18.2 Function to create such a graph 37
2.18.3 Creating such a graph . 39
2.18.4 The .dot file produced . 40
2.18.5 The .svg file produced . 40

3 Working on graphs without properties 43
3.1 Getting the vertices’ out degree 43
3.2 △ Is there an edge between two vertices? 45
3.3 △ Get the edge between two vertices 46
3.4 △△ Create a direct-neighbour subgraph from a vertex descriptor 47
3.5 △△ Create a direct-neighbour subgraph from a vertex descriptor

including inward edges . 48
3.6 △△ Creating all direct-neighbour subgraphs from a graph with-

out properties . 49
3.6.1 △ Are two graphs isomorphic? 50

3.7 △△ Count the number of connected components in an directed
graph . 51

3.8 △△ Count the number of connected components in an undirected
graph . 52

3.9 △△ Count the number of levels in an undirected graph 54
3.10 Saving a graph to a .dot file . 56
3.11 Loading a directed graph from a .dot 57
3.12 Loading an undirected graph from a .dot file 58

4 Building graphs with bundled vertices 61
4.1 Creating the bundled vertex class 61
4.2 Create the empty directed graph with bundled vertices 63
4.3 Create the empty undirected graph with bundled vertices 63
4.4 Add a bundled vertex . 64
4.5 Getting the bundled vertices’ my_vertexes 64
4.6 Creating a two-state Markov chain with bundled vertices 65

CONTENTS 5

4.6.1 Graph . 65
4.6.2 Function to create such a graph 65
4.6.3 Creating such a graph . 66
4.6.4 The .dot file produced . 67
4.6.5 The .svg file produced . 67

4.7 Creating K2 with bundled vertices 67
4.7.1 Graph . 67
4.7.2 Function to create such a graph 67
4.7.3 Creating such a graph . 69
4.7.4 The .dot file produced . 70
4.7.5 The .svg file produced . 70

5 Working on graphs with bundled vertices 73
5.1 Has a bundled vertex with a my_bundled_vertex 73
5.2 Find a bundled vertex with a certain my_bundled_vertex 75
5.3 Get a bundled vertex its my_bundled_vertex 76
5.4 Set a bundled vertex its my_vertex 77
5.5 Setting all bundled vertices’ my_vertex objects 78
5.6 Storing a graph with bundled vertices as a .dot 78
5.7 Loading a directed graph with bundled vertices from a .dot . . . 80
5.8 Loading an undirected graph with bundled vertices from a .dot . 82

6 Building graphs with bundled edges and vertices 85
6.1 Creating the bundled edge class 85
6.2 Create an empty directed graph with bundled edges and vertices 86
6.3 Create an empty undirected graph with bundled edges and vertices 87
6.4 Add a bundled edge . 88
6.5 Getting the bundled edges my_edges 90
6.6 Creating a Markov-chain with bundled edges and vertices 90

6.6.1 Graph . 90
6.6.2 Function to create such a graph 90
6.6.3 Creating such a graph . 92
6.6.4 The .dot file produced . 93
6.6.5 The .svg file produced . 95

6.7 Creating K3 with bundled edges and vertices 95
6.7.1 Graph . 95
6.7.2 Function to create such a graph 95
6.7.3 Creating such a graph . 96
6.7.4 The .dot file produced . 96
6.7.5 The .svg file produced . 97

7 Working on graphs with bundled edges and vertices 99
7.1 Has a my_bundled_edge . 99
7.2 Find a my_bundled_edge . 100
7.3 Get an edge its my_bundled_edge 101
7.4 Set an edge its my_bundled_edge 102

6 CONTENTS

7.5 Storing a graph with bundled edges and vertices as a .dot 103
7.6 Load a directed graph with bundled edges and vertices from a

.dot file . 104
7.7 Load an undirected graph with bundled edges and vertices from

a .dot file . 106

8 Building graphs with a graph name 109
8.1 Create an empty directed graph with a graph name property . . 109
8.2 Create an empty undirected graph with a graph name property . 110
8.3 Get a graph its name property 111
8.4 Set a graph its name property . 112
8.5 Create a directed graph with a graph name property 113

8.5.1 Graph . 113
8.5.2 Function to create such a graph 113
8.5.3 Creating such a graph . 113
8.5.4 The .dot file produced . 114
8.5.5 The .svg file produced . 114

8.6 Create an undirected graph with a graph name property 114
8.6.1 Graph . 114
8.6.2 Function to create such a graph 114
8.6.3 Creating such a graph . 114
8.6.4 The .dot file produced . 115
8.6.5 The .svg file produced . 115

9 Working on graphs with a graph name 117
9.1 Storing a graph with a graph name property as a .dot file 117
9.2 Loading a directed graph with a graph name property from a .dot

file . 118
9.3 Loading an undirected graph with a graph name property from

a .dot file . 119

10 Other graph functions 121
10.1 Encode a std::string to a Graphviz-friendly format 121
10.2 Decode a std::string from a Graphviz-friendly format 121
10.3 Check if a std::string is Graphviz-friendly 122

11 Misc functions 123
11.1 Getting a data type as a std::string 123
11.2 Convert a .dot to .svg . 124
11.3 Check if a file exists . 125

12 Errors 127
12.1 Formed reference to void . 127
12.2 No matching function for call to clear_out_edges 127
12.3 No matching function for call to clear_in_edges 128
12.4 Undefined reference to boost::detail::graph::read_graphviz_new . 128

CONTENTS 7

12.5 Property not found: node_id . 128
12.6 Stream zeroes . 129

A Appendix 133
A.1 List of all edge, graph and vertex properties 133
A.2 Graphviz attributes . 133

8 CONTENTS

Chapter 1

Introduction

This is ’Boost.Graph Cookbook 1: Basics’, version 3.3.

1.1 Why this tutorial

I needed this tutorial already in 2006, when I started experimenting with Boost.Graph.
More specifically, I needed a tutorial that:

• Orders concepts chronologically

• Increases complexity gradually

• Shows complete pieces of code

What I had were the Boost.Graph book [1] and the Boost.Graph website,
both did not satisfy these requirements.

1.2 Tutorial style

Readable for beginners This tutorial is aimed at the beginner programmer.
This tutorial is intended to take the reader to the level of understanding that
the book [1] and the Boost.Graph website require. It is about basic graph
manipulation, not the more advanced graph algorithms.

High verbosity This tutorial is intended to be as verbose, such that a begin-
ner should be able to follow every step, from reading the tutorial from beginning
to end chronologically. Especially in the earlier chapters, the rationale behind
the code presented is given, including references to the literature. Chapters
marked with △ are optional, less verbose and bring no new information to the
storyline.

9

10 CHAPTER 1. INTRODUCTION

Repetitiveness This tutorial is intended to be as repetitive, such that a be-
ginner can spot the patterns in the code snippets their increasing complexity.
Extending code from this tutorial should be as easy as extending the patterns.

Index In the index, I did first put all my long-named functions there literally,
but this resulted in a very sloppy layout. Instead, the function do_something
can be found as ’Do something’ in the index. On the other hand, STL and Boost
functions like std::do_something and boost::do_something can be found as
such in the index.

1.3 Coding style
Concept For every concept, I will show:

• a function that achieves a goal, for example create_empty_undirected_graph

• a test case of that function, that demonstrates how to use the function,
for example create_empty_undirected_graph_test

C++14 All coding snippets are taken from compiled and tested C++14 code.
I chose to use C++14 because it was available to me on all local and remote
computers. Next to this, it makes code even shorter then just C++11 .

Coding standard I use the coding style from the Core C++ Guidelines . At
the time of this writing, the Core C++ Guidelines were still in early develop-
ment, so I can only hope the conventions I then chose to follow are still Good
Ideas.

No comments in code It is important to add comments to code. In this
tutorial, however, I have chosen not to put comments in code, as I already
describe the function in the tutorial its text. This way, it prevents me from
saying the same things twice.

Trade-off between generic code and readability It is good to write
generic code . In this tutorial, however, I have chosen my functions to have
no templated arguments for conciseness and readability. For example, a vertex
name is std::string, the type for if a vertex is selected is a boolean, and
the custom vertex type is of type my_custom_vertex. I think these choices are
reasonable and that the resulting increase in readability is worth it.

Long function names I enjoy to show concepts by putting those in (long-
named) functions. These functions sometimes border the trivial, by, for ex-
ample, only calling a single Boost.Graph function. On the other hand, these
functions have more English-sounding names, resulting in demonstration code
that is readable. Additionally, they explicitly mention their return type (in a
simpler way), which may be considered informative.

1.4. LICENSE 11

Long function names and readability Due to my long function names and
the limitation of 50 characters per line, sometimes the code does get to look a
bit awkward. I am sorry for this.

Use of auto I prefer to use the keyword auto over doubling the lines of code
for using statements. Often the do functions return an explicit data type, these
can be used for reference. Sometime I deduce the return type using decltype
and a function with the same return type. When C++17 gets accessible, I
will use decltype(auto) If you really want to know a type, you can use the
get_type_name function (chapter 11.1)

Explicit use of namespaces On the other hand, I am explicit in the
namespaces of functions and classes I use, so to distinguish between types like
std::array and boost::array. Some functions (for example, get) reside in
the namespace of the graph to work on. In this tutorial, this is in the global
namespace. Thus, I will write get, instead of boost::get, as the latter does
not compile.

Use of STL algorithms I try to use STL algorithms wherever I can. Also you
should prefer algorithm calls over hand-written for-loops ([2], chapter 18.12.1
and [3], item 43). Sometimes using these algorithms becomes a burden on the
lines of code. So, only if it shortens the number of lines significantly, I use raw
for-loops, even though you shouldn’t.

Re-use of functions The functions I develop in this tutorial are re-used from
that moment on. This improves to readability of the code and decreases the
number of lines.

Tested to compile All functions in this tutorial are tested to compile using
GitHub Actions in both debug and release mode.

Tested to work All functions in this tutorial are tested, using the Boost.Test
library. GitHub Actions calls these tests after each push to the repository.

Availability The code, as well as this tutorial, can be downloaded from the
GitHub at www.github.com/richelbilderbeek/boost_graph_cookbook_1.

1.4 License

This tutorial is licensed under Creative Commons license 4.0. All C++ code is
licensed under GPL 3.0.

www.github.com/richelbilderbeek/boost_graph_cookbook_1

12 CHAPTER 1. INTRODUCTION

Figure 1.1: Creative Commons license 4.0

1.5 Feedback

This tutorial is not intended to be perfect yet. For that, I need help and feed-
back from the community. All referenced feedback is welcome, as well as any
constructive feedback.

I have tried hard to strictly follow the style as described above. If you find I
deviated from these decisions somewhere, I would be grateful if you’d let know.
Next to this, there are some sections that need to be coded or have its code
improved.

1.6 Acknowledgements

These are users that improved this tutorial and/or the code behind this tutorial,
in chronological order:

• m-dudley, http://stackoverflow.com/users/111327/m-dudley

• E. Kawashima

• mat69, https://www.reddit.com/user/mat69

• danielhj, https://www.reddit.com/user/danieljh

• sehe, http://stackoverflow.com/users/85371/sehe

• cv_and_me, http://stackoverflow.com/users/2417774/cv-and-he

• mywtfmp3

1.7 Outline

The chapters of this tutorial are also like a well-connected graph. To allow for
quicker learners to skim chapters, or for beginners looking to find the patterns.

The distinction between the chapter is in the type of edges and vertices.
They can have:

• no properties: see chapter 2

• have a bundled property: see chapter 4

http://stackoverflow.com/users/111327/m-dudley
https://www.reddit.com/user/mat69
https://www.reddit.com/user/danieljh
http://stackoverflow.com/users/85371/sehe
http://stackoverflow.com/users/2417774/cv-and-he

1.7. OUTLINE 13

Figure 1.2: The relations between sub-chapters

14 CHAPTER 1. INTRODUCTION

Pivotal chapters are chapters like ’Finding the first vertex with ...’, as this
opens up the door to finding a vertex and manipulating it.

All chapters have a rather similar structure in themselves, as depicted in
figure 1.2.

There are also some bonus chapters, that I have labeled with a △. These
chapters are added I needed these functions myself and adding them would not
hurt. Just feel free to skip them, as there will be less theory explained.

Chapter 2

Building graphs without
properties

Boost.Graph is about creating graphs. In this chapter we create the simplest of
graphs, in which edges and nodes have no properties (e.g. a property can have
than a vertex has a color or an edge that has a length).

Still, there are two types of graphs that can be constructed: undirected and
directed graphs. The difference between directed and undirected graphs is in
the edges: in an undirected graph , an edge connects two vertices without any
directionality, as displayed in figure 2.1.

In a directed graph , an edge goes from a certain vertex, its source, to another
(which may actually be the same), its target. A directed graph is shown in figure
2.2.

In this chapter, we will build two directed and two undirected graphs:

• An empty (directed) graph, which is the default type: see chapter 2.1

• An empty (undirected) graph: see chapter 2.2

• A two-state Markov chain, a directed graph with two vertices and four
edges: see chapter 2.14

• K2, an undirected graph with two vertices and one edge, see chapter 2.15

Figure 2.1: Example of an undirected graph

15

16 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

A B C

Figure 2.2: Example of a directed graph

Creating an empty graph may sound trivial, it is not, thanks to the versatility
of the Boost.Graph library.

In the process of creating graphs, some basic (sometimes bordering trivial)
functions are encountered:

• Counting the number of vertices: see chapter 2.3

• Counting the number of edges: see chapter 2.4

• Adding a vertex: see chapter 2.5

• Getting all vertices: see chapter 2.7

• Getting all vertex descriptors: see chapter 2.8

• Adding an edge: see chapter 2.9

• Getting all edges: see chapter 2.11

• Getting all edge descriptors: see chapter 2.13

These functions are mostly there for completion and showing which data
types are used.

The chapter also introduces some important concepts:

• Vertex descriptors: see chapter 2.6

• Edge insertion result: see chapter 2.9

• Edge descriptors: see chapter 2.12

After this chapter you may want to:

• Building graphs with bundled vertices: see chapter 4

• Building graphs with a graph name: see chapter 8

2.1. CREATING AN EMPTY (DIRECTED) GRAPH 17

2.1 Creating an empty (directed) graph
Let’s create an empty graph! Listing 2.1 shows the function to create an empty
graph.

#include <boost/graph/adjacency_list.hpp >

boost:: adjacency_list <> create_empty_directed_graph ()
noexcept { return {}; }

Listing 2.1: Creating an empty (directed) graph

The code consists out of an #include and a function definition. The #include
tells the compiler to read the header file adjacency_list.hpp. A header
file (often with a .h or .hpp extension) contains class and functions declara-
tions and/or definitions. The header file adjacency_list.hpp contains the
boost::adjacency_list class definition. Without including this file, you will
get compile errors like ’definition of boost::adjacency_list unknown’ 1.

The function create_empty_directed_graph has:

• a return type: The return type is boost::adjacency_list<>, that is a
boost::adjacency_list with all template arguments set at their defaults

• a noexcept specification: the function should not throw 2, so it is preferred
to mark it noexcept ([4], chapter 13.7)

• a function body: all the function body does is implicitly create its return
type by using the {}. An alternative syntax would be return boost::adjacency_list<>(),
which is needlessly longer

Listing 2.2 demonstrates the create_empty_directed_graph function. This
demonstration is embedded within a Boost.Test unit test case. It includes a
Boost.Test header to allow to use the Boost.Test framework. Additionally, a
header file is included with the same name as the function 3. This allows use to
be able to use the function. The test case creates an empty graph and stores it.
Instead of specifying the data type explicitly, auto is used (this is preferred, [4]
chapter 31.6), which lets the compiler figure out the type itself.

#include "create_empty_directed_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_empty_directed_graph)
{

const auto g = create_empty_directed_graph ();
BOOST_CHECK(boost :: is_directed(g));

}

1In practice, these compiler error messages will be longer, bordering the unreadable
2if the function would throw because it cannot allocate this little piece of memory, you are

already in big trouble
3I do not think it is important to have creative names

18 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

Listing 2.2: Demonstration of create_empty_directed_graph

Congratulations, you’ve just created a boost::adjacency_list with its de-
fault template arguments. The boost::adjacency_list is the most commonly
used graph type, the other is the boost::adjacency_matrix .

We do not do anything with it yet, but still, you’ve just created a graph, in
which:

• The out edges and vertices are stored in a std::vector

• The edges have a direction

• The vertices, edges and graph have no properties

• The edges are stored in a std::list

It stores its edges, out edges and vertices in two different STL 4 containers.
std::vector is the container you should use by default ([4], chapter 31.6, [5],
chapter 76), as it has constant time look-up and back insertion. The std::list
is used for storing the edges, as it is better suited at inserting elements at any
position.

I use const to store the empty graph as we do not modify it. Correct use of
const is called const-correct. Prefer to be const-correct ([2], chapter 7.9.3, [4],
chapter 12.7, [3], item 3, [6], chapter 3, [5], item 15, [7], FAQ 14.05, [8], item 8,
[9], 9.1.6).

2.2 Creating an empty undirected graph

Let’s create another empty graph! This time, we even make it undirected!
Listing 2.3 shows how to create an undirected graph.

#include <boost/graph/adjacency_list.hpp >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS >

create_empty_undirected_graph () noexcept
{

return {};
}

Listing 2.3: Creating an empty undirected graph

This algorithm differs from the create_empty_directed_graph function
(algorithm 2.1) in that there are three template arguments that need to be
specified in the creation of the boost::adjacency_list:

4Standard Template Library, the standard library

2.3. COUNTING THE NUMBER OF VERTICES 19

• the first boost::vecS : select (that is what the S means) that out edges
are stored in a std::vector This is the default way.

• the second boost::vecS : select that the graph vertices are stored in a
std::vector . This is the default way.

• boost::undirectedS : select that the graph is undirected. This is all we
needed to change. By default, this argument is boost::directed

Listing 2.4 demonstrates the create_empty_undirected_graph function.

#include "create_empty_undirected_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_empty_undirected_graph)
{

const auto g = create_empty_undirected_graph ();
BOOST_CHECK(boost :: is_undirected(g));

}

Listing 2.4: Demonstration of create_empty_undirected_graph

Congratulations, with algorithm 2.4, you have just created an undirected
graph in which:

• The out edges and vertices are stored in a std::vector

• The graph is undirected

• Vertices, edges and graph have no properties

• Edges are stored in a std::list

2.3 Counting the number of vertices
Let’s count all zero vertices of an empty graph!

#include <boost/graph/adjacency_list.hpp >
#include <cassert >

template <typename graph >
int get_n_vertices(const graph& g) noexcept
{

const int n{ static_cast <int >(boost:: num_vertices(g)) };
assert(static_cast <unsigned long >(n) == boost ::

num_vertices(g));
return n;

}

Listing 2.5: Count the number of vertices

20 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

The function get_n_vertices takes the result of boost::num_vertices
, converts it to int and checks if there was conversion error. We do so, as
one should prefer using signed data types over unsigned ones in an interface
([9], chapter 9.2.2). To do so, in the function body its first statement, the
unsigned long produced by boost::num_vertices get converted to an int using
a static_cast .

Using an unsigned integer over a (signed) integer for the sake of gaining that
one more bit ([2], chapter 4.4) should be avoided. The integer n is initialized
using list-initialization, which is preferred over the other initialization syntaxes
([4], chapter 17.7.6).

The assert checks if the conversion back to unsigned long re-creates the
original value, to check if no information has been lost. If information is lost,
the program crashes. Use assert extensively ([2], chapter 24.5.18, [4], chapter
30.5, [5]. chapter 68, [10], chapter 8.2, [11], hour 24, [9], chapter 2.6).

The function get_n_vertices is demonstrated in algorithm 2.6, to measure
the number of vertices of both the directed and undirected graph we are already
able to create.

#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_n_vertices.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_n_vertices)
{

const auto g = create_empty_directed_graph ();
BOOST_CHECK(get_n_vertices(g) == 0);

const auto h = create_empty_undirected_graph ();
BOOST_CHECK(get_n_vertices(h) == 0);

}

Listing 2.6: Demonstration of the get_n_vertices function

Note that the type of graph does not matter here. One can count the number
of vertices of every graph, as all graphs have vertices. Boost.Graph is very good
at detecting operations that are not allowed, during compile time.

2.4 Counting the number of edges

Let’s count all zero edges of an empty graph!
This is very similar to the previous chapter, only it uses boost::num_edges

instead:

#include <boost/graph/adjacency_list.hpp >
#include <cassert >

template <typename graph >

2.5. ADDING A VERTEX 21

int get_n_edges(const graph& g) noexcept
{

const int n{ static_cast <int >(boost:: num_edges(g)) };
assert(static_cast <unsigned long >(n) == boost :: num_edges(g

));
return n;

}

Listing 2.7: Count the number of edges

This code is similar to the get_n_vertices function (algorithm 2.5, see ra-
tionale there) except boost::num_edges is used, instead of boost::num_vertices,
which also returns an unsigned long.

The function get_n_edges is demonstrated in algorithm 2.8, to measure the
number of edges of an empty directed and undirected graph.

#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_n_edges.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_n_edges)
{

const auto g = create_empty_directed_graph ();
BOOST_CHECK(get_n_edges(g) == 0);

const auto h = create_empty_undirected_graph ();
BOOST_CHECK(get_n_edges(h) == 0);

}

Listing 2.8: Demonstration of the get_n_edges function

2.5 Adding a vertex
Empty graphs are nice, now its time to add a vertex!

To add a vertex to a graph, the boost::add_vertex function is used as
shows in algorithm 2.9:

#include <boost/graph/adjacency_list.hpp >
#include <type_traits >

template <typename graph >
typename boost :: graph_traits <graph >:: vertex_descriptor

add_vertex(
graph& g) noexcept

{
static_assert (!std::is_const <graph >::value , "graph cannot

be const");
const auto vd = boost:: add_vertex(g);

22 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

return vd;
}

Listing 2.9: Adding a vertex to a graph

The static_assert at the top of the function checks during compiling
if the function is called with a non-const graph. One can freely omit this
static_assert: you will get a compiler error anyways, be it a less helpful
one.

Note that boost::add_vertex (in the add_vertex function) returns a vertex
descriptor, which is ignored for now. Vertex descriptors are looked at in more
details at the chapter 2.6, as we need these to add an edge. To allow for this
already, add_vertex also returns a vertex descriptor.

Listing 2.10 shows how to add a vertex to a directed and undirected graph.

#include "add_vertex.h"
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_add_vertex)
{

auto g = create_empty_undirected_graph ();
add_vertex(g);
BOOST_CHECK(boost:: num_vertices(g) == 1);

auto h = create_empty_directed_graph ();
add_vertex(h);
BOOST_CHECK(boost:: num_vertices(h) == 1);

}

Listing 2.10: Demonstration of the add_vertex function

This demonstration code creates two empty graphs, adds one vertex to each
and then asserts that the number of vertices in each graph is one. This works
for both types of graphs, as all graphs have vertices.

2.6 Vertex descriptors
A vertex descriptor is a handle to a vertex within a graph.

Vertex descriptors can be obtained by dereferencing a vertex iterator (see
chapter 2.8). To do so, we first obtain some vertex iterators in chapter 2.7).

Vertex descriptors are used to:

• add an edge between two vertices: see chapter 2.9

• obtain properties of a vertex, for example the vertex its out degrees (chap-
ter 3.1)

In this tutorial, vertex descriptors have named prefixed with vd_ , for exam-
ple vd_1.

2.7. GET THE VERTEX ITERATORS 23

2.7 Get the vertex iterators
You cannot get the vertices. This may sound unexpected, as it must be possible
to work on the vertices of a graph. Working on the vertices of a graph is done
through these steps:

• Obtain a vertex iterator pair from the graph

• Dereferencing a vertex iterator to obtain a vertex descriptor

vertices (not boost::vertices) is used to obtain a vertex iterator pair ,
as shown in algorithm 2.11.

The first vertex iterator points to the first vertex (its descriptor, to be pre-
cise), the second points to beyond the last vertex (its descriptor, to be precise).
In this tutorial, vertex iterator pairs have named prefixed with vip_ , for exam-
ple vip_1.

#include <boost/graph/adjacency_list.hpp >

template <typename graph >
std::pair <typename graph:: vertex_iterator , typename graph::

vertex_iterator >
get_vertex_iterators(const graph& g) noexcept
{

return vertices(g);
}

Listing 2.11: Get the vertex iterators of a graph

This is a somewhat trivial function, as it forwards the function call to
vertices (not boost::vertices).

These vertex iterators can be dereferenced to obtain the vertex descriptors.
Note that get_vertex_iterators will not be used often in isolation: usually
one obtains the vertex descriptors immediately. Just for your reference, algo-
rithm 2.12 demonstrates of the get_vertices function, by showing that the
vertex iterators of an empty graph point to the same location.

#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_vertex_iterators.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_vertex_iterators)
{

const auto g = create_empty_undirected_graph ();
const auto vip_g = get_vertex_iterators(g);
BOOST_CHECK(vip_g.first == vip_g.second);

const auto h = create_empty_directed_graph ();
const auto vip_h = get_vertex_iterators(h);

24 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

BOOST_CHECK(vip_h.first == vip_h.second);
}

Listing 2.12: Demonstration of get_vertex_iterators

2.8 Get all vertex descriptors

Vertex descriptors are the way to manipulate those vertices. Let’s go get the
all!

Vertex descriptors are obtained from dereferencing vertex iterators. Listing
2.13 shows how to obtain all vertex descriptors from a graph.

#include <boost/graph/adjacency_list.hpp >
#include <boost/graph/graph_traits.hpp >
#include <vector >

template <typename graph >
std::vector <typename boost :: graph_traits <graph >::

vertex_descriptor >
get_vertex_descriptors(const graph& g) noexcept
{

using vd = typename graph :: vertex_descriptor;

std::vector <vd> vds(boost:: num_vertices(g));
const auto vis = vertices(g);
std::copy(vis.first , vis.second , std:: begin(vds));
return vds;

}

Listing 2.13: Get all vertex descriptors of a graph

This is the first more complex piece of code. In the first lines, some using
statements allow for shorter type names 5.

The std::vector to serve as a return value is created at the needed size,
which is the number of vertices.

The function vertices
(not boost::vertices !) returns a vertex iterator pair. These iterators are used

by std::copy to iterator over. std::copy is an STL algorithm to copy a half-open
range. Prefer algorithm calls over hand-written for-loops ([2] chapter 18.12.1,
[3] item 43). In this case, we copy all vertex descriptors in the range produced
by vertices to the std::vector .

This function will not be used in practice: one iterates over the vertices
directly instead, saving the cost of creating a std::vector . This function is
only shown as an illustration.

Listing 2.14 demonstrates that an empty graph has no vertex descriptors:

5which may be necessary just to create a tutorial with code snippets that are readable

2.9. ADD AN EDGE 25

#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_vertex_descriptors.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_vertex_descriptors)
{

const auto g = create_empty_undirected_graph ();
const auto vds_g = get_vertex_descriptors(g);
BOOST_CHECK(vds_g.empty ());

const auto h = create_empty_directed_graph ();
const auto vds_h = get_vertex_descriptors(h);
BOOST_CHECK(vds_h.empty ());

}

Listing 2.14: Demonstration of get_vertex_descriptors

Because all graphs have vertices and thus vertex descriptors, the type of
graph is unimportant for this code to compile.

2.9 Add an edge

To add an edge to a graph, two vertex descriptors are needed. A vertex descrip-
tor is a handle to the vertex within a graph (vertex descriptors are looked at
in more details in chapter 2.6). Listing 2.15 adds two vertices to a graph, and
connects these two using boost::add_edge :

#include <boost/graph/adjacency_list.hpp >
#include <cassert >
#include <type_traits >

template <typename graph >
typename boost :: graph_traits <graph >:: edge_descriptor

add_edge(graph& g) noexcept
{

static_assert (!std::is_const <graph >::value , "graph cannot
be const");

const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
const auto aer = boost:: add_edge(vd_a , vd_b , g);
assert(aer.second);
return aer.first;

}

Listing 2.15: Adding (two vertices and) an edge to a graph

Listing 2.15

26 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

shows how to add an isolated edge to a graph (instead of allowing for graphs
with higher connectivities). First, two vertices are created, using the function
boost::add_vertex. boost::add_vertex returns a vertex descriptor (which I
prefix with vd), both of which are stored. The vertex descriptors are used to
add an edge to the graph, using boost::add_edge .

boost::add_edge returns a std::pair , consisting of an edge descriptor and
a boolean success indicator. The success of adding the edge is checked by an
assert statement. Here we assert that this insertion was successful. Insertion
can fail if an edge is already present and duplicates are not allowed.

A demonstration of add_edge is shown in algorithm 2.16, in which an edge
is added to both a directed and undirected graph, after which the number of
edges and vertices is checked.

#include "add_edge.h"
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_add_edge)
{

auto g = create_empty_undirected_graph ();
add_edge(g);
BOOST_CHECK(boost:: num_vertices(g) == 2);
BOOST_CHECK(boost:: num_edges(g) == 1);

auto h = create_empty_directed_graph ();
add_edge(h);
BOOST_CHECK(boost:: num_vertices(h) == 2);
BOOST_CHECK(boost:: num_edges(h) == 1);

}

Listing 2.16: Demonstration of add_edge

The graph type is unimportant: as all graph types have vertices and edges,
edges can be added without possible compile problems.

2.10 boost::add_edge result
When using the function boost::add_edge, a std::pair<edge_descriptor,bool>
is returned. It contains both the edge descriptor (see chapter 2.12) and a
boolean, which indicates insertion success.

In this tutorial, boost::add_edge results have named prefixed with aer_ ,
for example aer_1.

2.11 Getting the edge iterators
You cannot get the edges directly. Instead, working on the edges of a graph is
done through these steps:

2.11. GETTING THE EDGE ITERATORS 27

• Obtain an edge iterator pair from the graph

• Dereference an edge iterator to obtain an edge descriptor

edges (not boost::edges) is used to obtain an edge iterator pair .
The first edge iterator points to the first edge (its descriptor, to be precise),

the second points to beyond the last edge (its descriptor, to be precise). In this
tutorial, edge iterator pairs have named prefixed with eip_ , for example eip_1.
Listing 2.17 shows how to obtain these:

#include <boost/graph/adjacency_list.hpp >

template <typename graph >
std::pair <typename graph:: edge_iterator , typename graph::

edge_iterator >
get_edge_iterators(const graph& g) noexcept
{

return edges(g);
}

Listing 2.17: Get the edge iterators of a graph

This is a somewhat trivial function, as all it does is forward to function
call to edges (not boost::edges !). These edge iterators can be dereferenced to
obtain the edge descriptors. Note that this function will not be used often in
isolation: usually one obtains the edge descriptors immediately.

Listing 2.18 demonstrates get_edge_iterators by showing that both iter-
ators of the edge iterator pair point to the same location, when the graph is
empty.

#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_edge_iterators.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_edge_iterators)
{

const auto g = create_empty_undirected_graph ();
const auto eip_g = get_edge_iterators(g);
BOOST_CHECK(eip_g.first == eip_g.second);

auto h = create_empty_directed_graph ();
const auto eip_h = get_edge_iterators(h);
BOOST_CHECK(eip_h.first == eip_h.second);

}

Listing 2.18: Demonstration of get_edge_iterators

28 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

2.12 Edge descriptors

An edge descriptor is a handle to an edge within a graph. They are similar to
vertex descriptors (chapter 2.6).

Edge descriptors are used to obtain the name, or other properties, of an
edge.

In this tutorial, edge descriptors have named prefixed with ed_ , for example
ed_1.

2.13 Get all edge descriptors

Obtaining all edge descriptors is similar to obtaining all vertex descriptors (al-
gorithm 2.13), as shown in algorithm 2.19:

#include "boost/graph/graph_traits.hpp"
#include <boost/graph/adjacency_list.hpp >
#include <vector >

template <typename graph >
std::vector <typename boost :: graph_traits <graph >::

edge_descriptor >
get_edge_descriptors(const graph& g) noexcept
{

using boost :: graph_traits;
using ed = typename graph_traits <graph >:: edge_descriptor;
std::vector <ed> v(boost:: num_edges(g));
const auto eip = edges(g);
std::copy(eip.first , eip.second , std:: begin(v));
return v;

}

Listing 2.19: Get all edge descriptors of a graph

The only difference is that instead of the function vertices (not boost::vertices
!), edges (not boost::edges !) is used.

Listing 2.20 demonstrates the get_edge_descriptor, by showing that empty
graphs do not have any edge descriptors.

#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_edge_descriptors.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_edge_descriptors)
{

const auto g = create_empty_directed_graph ();
const auto eds_g = get_edge_descriptors(g);
BOOST_CHECK(eds_g.empty ());

2.14. CREATING A DIRECTED GRAPH 29

A B

Figure 2.3: The two-state Markov chain

const auto h = create_empty_undirected_graph ();
const auto eds_h = get_edge_descriptors(h);
BOOST_CHECK(eds_h.empty ());

}

Listing 2.20: Demonstration of get_edge_descriptors

2.14 Creating a directed graph
Finally, we are going to create a directed non-empty graph!

This directed graph is a two-state Markov chain, with two vertices and four
edges, as depicted in figure 2.3:

Note that directed graphs can have edges that start and end in the same
vertex. These are called self-loops.

2.14.1 Function to create such a graph
To create this two-state Markov chain, the following code can be used:

#include "create_empty_directed_graph.h"
#include <cassert >

boost:: adjacency_list <> create_markov_chain () noexcept
{

auto g = create_empty_directed_graph ();
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
boost:: add_edge(vd_a , vd_a , g);
boost:: add_edge(vd_a , vd_b , g);
boost:: add_edge(vd_b , vd_a , g);

30 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

boost:: add_edge(vd_b , vd_b , g);
return g;

}

Listing 2.21: Creating the two-state Markov chain as depicted in figure 2.3

Instead of typing the complete type, we call the create_empty_directed_graph
function, and let auto figure out the type. The vertex descriptors (see chapter
2.6) created by two boost::add_vertex calls are stored to add an edge to the
graph. Then boost::add_edge is called four times. Every time, its return type
(see chapter 2.10) is checked for a successful insertion.

Note that the graph lacks all properties: nodes do not have names, nor do
edges.

2.14.2 Creating such a graph
Listing 2.22 demonstrates the create_markov_chain_graph function and checks
if it has the correct amount of edges and vertices:

#include "create_markov_chain.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_markov_chain)
{

const auto g = create_markov_chain ();
BOOST_CHECK(boost:: num_vertices(g) == 2);
BOOST_CHECK(boost:: num_edges(g) == 4);

}

Listing 2.22: Demonstration of the create_markov_chain

2.14.3 The .dot file produced
Running a bit ahead, this graph can be converted to a .dot file using the
save_graph_to_dot function (algorithm 3.20). The .dot file created is displayed
in algorithm 2.23:

digraph G {
0;
1;
0->0 ;
0->1 ;
1->0 ;
1->1 ;
}

Listing 2.23: .dot file created from the create_markov_chain_graph function
(algorithm 2.21), converted from graph to .dot file using algorithm

From the .dot file one can already see that the graph is directed, because:

2.15. CREATING K2, A FULLY CONNECTED UNDIRECTED GRAPH WITH TWO VERTICES31

• The first word, digraph, denotes a directed graph (where graph would
have indicated an undirected graph)

• The edges are written as -> (where undirected connections would be writ-
ten as –)

2.14.4 The .svg file produced

The .svg file of this graph is shown in figure 2.4:

Figure 2.4: .svg file created from the create_markov_chain function (algorithm
2.21) its .dot file and converted from .dot file to .svg using algorithm 11.2;

This figure shows that the graph in directed, as the edges have arrow heads.
The vertices display the node index, which is the default behavior.

2.15 Creating K2, a fully connected undirected
graph with two vertices

Finally, we are going to create an undirected non-empty graph!
To create a fully connected undirected graph with two vertices (also called

K2), one needs two vertices and one (undirected) edge, as depicted in figure 2.5.

2.15.1 Function to create such a graph

To create K2, the following code can be used:

#include "create_empty_undirected_graph.h"

Figure 2.5: K2 : a fully connected undirected graph with two vertices

32 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS >

create_k2_graph () noexcept
{

auto g = create_empty_undirected_graph ();
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
boost:: add_edge(vd_a , vd_b , g);
return g;

}

Listing 2.24: Creating K2 as depicted in figure 2.5

This code is very similar to the add_edge function (algorithm 2.15). Instead
of typing the graph its type, we call the create_empty_undirected_graph
function and let auto figure it out. The vertex descriptors (see chapter 2.6)
created by two boost::add_vertex calls are stored to add an edge to the graph.

From boost::add_edge its return type (see chapter 2.10), it is only checked
that insertion has been successful.

Note that the graph lacks all properties: nodes do not have names, nor do
edges.

2.15.2 Creating such a graph

Listing 2.25 demonstrates how to create_k2_graph and checks if it has the
correct amount of edges and vertices:

#include "create_k2_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_k2_graph)
{

const auto g = create_k2_graph ();
BOOST_CHECK(boost:: num_vertices(g) == 2);
BOOST_CHECK(boost:: num_edges(g) == 1);

}

Listing 2.25: Demonstration of create_k2_graph

2.15.3 The .dot file produced

Running a bit ahead, this graph can be converted to the .dot file as shown in
algorithm 2.26:

graph G {
0;
1;
0--1 ;

2.16. △ CREATING K3, A FULLY CONNECTED UNDIRECTED GRAPH WITH THREE VERTICES33

}

Listing 2.26: .dot file created from the create_k2_graph function (algorithm
2.24) converted from graph to .dot file using algorithm 3.20

From the .dot file one can already see that the graph is undirected, because:

• The first word, graph, denotes an undirected graph (where digraph would
have indicated a directional graph)

• The edge between 0 and 1 is written as – (where directed connections
would be written as ->, <- or <>)

2.15.4 The .svg file produced

Continuing to running a bit ahead, this .dot file can be converted to the .svg as
shown in figure 2.6:

Figure 2.6: .svg file created from the create_k2_graph’ function (algorithm
2.24) its .dot file, converted from .dot file to .svg using algorithm 11.2

Also this figure shows that the graph in undirected, otherwise the edge would
have one or two arrow heads. The vertices display the node index, which is the
default behavior.

2.16 △ Creating K3, a fully connected undirected
graph with three vertices

This is an extension of the previous chapter

2.16.1 Graph

To create a fully connected undirected graph with three vertices (also called
K4), one needs three vertices and three (undirected) edge, as depicted in figure
2.7.

34 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

Figure 2.7: K3: a fully connected graph with three edges and vertices

2.16.2 Function to create such a graph
To create K3, the following code can be used:

#include "create_empty_undirected_graph.h"
#include "create_k3_graph.h"
#include <cassert >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS >

create_k3_graph () noexcept
{

auto g = create_empty_undirected_graph ();
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
const auto vd_c = boost:: add_vertex(g);
boost:: add_edge(vd_a , vd_b , g);
boost:: add_edge(vd_b , vd_c , g);
boost:: add_edge(vd_c , vd_a , g);
return g;

}

Listing 2.27: Creating K3 as depicted in figure 2.7

2.16.3 Creating such a graph
Listing 2.28 demonstrates create_k3_graph and checks if it has the correct
amount of edges and vertices:

#include "create_k3_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_k3_graph)
{

const auto g = create_k3_graph ();

2.16. △ CREATING K3, A FULLY CONNECTED UNDIRECTED GRAPH WITH THREE VERTICES35

BOOST_CHECK(boost :: num_edges(g) == 3);
BOOST_CHECK(boost :: num_vertices(g) == 3);

}

Listing 2.28: Demonstration of create_k3_graph

2.16.4 The .dot file produced
This graph can be converted to the .dot file as shown in algorithm 2.29:

graph G {
0;
1;
2;
0--1 ;
1--2 ;
2--0 ;
}

Listing 2.29: .dot file created from the create_k3_graph function (algorithm
2.27) converted from graph to .dot file using algorithm 3.20

2.16.5 The .svg file produced
Continuing to running a bit ahead, this .dot file can be converted to the .svg as
shown in figure 2.8:

Figure 2.8: .svg file created from the create_k3_graph function (algorithm 2.27)
its .dot file, converted from .dot file to .svg using algorithm 11.2

36 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

A B C D

Figure 2.9: A path graph with four vertices

2.17 △ Creating a path graph
A path graph is a linear graph without any branches

2.17.1 Graph
Here I show a path graph with four vertices (see figure 2.9):

2.17.2 Function to create such a graph
To create a path graph, the following code can be used:

#include "create_empty_undirected_graph.h"

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS >

create_path_graph(const size_t n_vertices) noexcept
{

auto g = create_empty_undirected_graph ();
if (n_vertices == 0)

return g;
auto vd_1 = boost :: add_vertex(g);
if (n_vertices == 1)

return g;
for (size_t i = 1; i != n_vertices; ++i) {

auto vd_2 = boost :: add_vertex(g);
boost:: add_edge(vd_1 , vd_2 , g);
vd_1 = vd_2;

}
return g;

}

Listing 2.30: Creating a path graph as depicted in figure 2.9

2.17.3 Creating such a graph
Listing 2.31 demonstrates create_path_graph and checks if it has the correct
amount of edges and vertices:

#include "create_path_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_path_graph)
{

2.18. △ CREATING A PETERSON GRAPH 37

const auto g = create_path_graph (4);
BOOST_CHECK(boost :: num_edges(g) == 3);
BOOST_CHECK(boost :: num_vertices(g) == 4);

}

Listing 2.31: Demonstration of create_path_graph

2.17.4 The .dot file produced

This graph can be converted to the .dot file as shown in algorithm 2.32:

graph G {
0;
1;
2;
3;
0--1 ;
1--2 ;
2--3 ;
}

Listing 2.32: .dot file created from the create_path_graph function (algorithm
2.30) converted from graph to .dot file using algorithm 3.20

2.17.5 The .svg file produced

The .dot file can be converted to the .svg as shown in figure 2.10:

2.18 △ Creating a Peterson graph

A Petersen graph is the first graph with interesting properties.

2.18.1 Graph

To create a Petersen graph, one needs five vertices and five undirected edges, as
depicted in figure 2.11.

2.18.2 Function to create such a graph

To create a Petersen graph, the following code can be used:

#include "create_empty_undirected_graph.h"
#include <cassert >
#include <vector >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS >

38 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

Figure 2.10: .svg file created from the create_path_graph function (algorithm
2.30) its .dot file, converted from .dot file to .svg using algorithm 11.2

Figure 2.11: A Petersen graph (from https://en.wikipedia.org/wiki/
Petersen_graph)

https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Petersen_graph

2.18. △ CREATING A PETERSON GRAPH 39

create_petersen_graph () noexcept
{

using vd = decltype(create_empty_undirected_graph ())::
vertex_descriptor;

auto g = create_empty_undirected_graph ();

std::vector <vd> v; // Outer
for (int i = 0; i != 5; ++i) {

v.push_back(boost :: add_vertex(g));
}
std::vector <vd> w; // Inner
for (int i = 0; i != 5; ++i) {

w.push_back(boost :: add_vertex(g));
}
// Outer ring
for (int i = 0; i != 5; ++i) {

boost:: add_edge(v[i], v[(i + 1) % 5], g);
}
// Spoke
for (int i = 0; i != 5; ++i) {

boost:: add_edge(v[i], w[i], g);
}
// Inner pentagram
for (int i = 0; i != 5; ++i) {

boost:: add_edge(w[i], w[(i + 2) % 5], g);
}
return g;

}

Listing 2.33: Creating Petersen graph as depicted in figure 2.11

2.18.3 Creating such a graph

Listing 2.34 demonstrates how to use create_petersen_graph and checks if it
has the correct amount of edges and vertices:

#include "create_petersen_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_petersen_graph)
{

const auto g = create_petersen_graph ();
BOOST_CHECK(boost :: num_edges(g) == 15);
BOOST_CHECK(boost :: num_vertices(g) == 10);

}

Listing 2.34: Demonstration of create_k3_graph

40 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

2.18.4 The .dot file produced
This graph can be converted to the .dot file as shown in algorithm 2.35:

graph G {
0;
1;
2;
3;
4;
5;
6;
7;
8;
9;
0--1 ;
1--2 ;
2--3 ;
3--4 ;
4--0 ;
0--5 ;
1--6 ;
2--7 ;
3--8 ;
4--9 ;
5--7 ;
6--8 ;
7--9 ;
8--5 ;
9--6 ;
}

Listing 2.35: .dot file created from the create_petersen_graph function
(algorithm 2.33) converted from graph to .dot file using algorithm 3.20

2.18.5 The .svg file produced
This .dot file can be converted to the .svg as shown in figure 2.12:

2.18. △ CREATING A PETERSON GRAPH 41

Figure 2.12: .svg file created from the create_petersen_graph function (algo-
rithm 2.33) its .dot file, converted from .dot file to .svg using algorithm 11.2

42 CHAPTER 2. BUILDING GRAPHS WITHOUT PROPERTIES

Chapter 3

Working on graphs without
properties

Now that we can build a graph, there are some things we can do.

• Getting the vertices’ out degrees: see chapter 3.1

• Create a direct-neighbour subgraph from a vertex descriptor

• Create all direct-neighbour subgraphs from a graphs

• Saving a graph without properties to .dot file: see chapter 3.10

• Loading an undirected graph without properties from .dot file: see chapter
3.12

• Loading a directed graph without properties from .dot file: see chapter
3.11

3.1 Getting the vertices’ out degree
Let’s measure the out degree of all vertices in a graph!

The out degree of a vertex is the number of edges that originate at it.
The number of connections is called the degree of the vertex. There are

three types of degrees:

• in degree: the number of incoming connections, using in_degree (not
boost::in_degree)

• out degree: the number of outgoing connections, using out_degree (not
boost::out_degree)

• degree: sum of the in degree and out degree, using degree (not boost::degree
)

43

44 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

Listing 3.1 shows how to obtain these:

#include <boost/graph/adjacency_list.hpp >
#include <vector >

template <typename graph >
std::vector <int > get_vertex_out_degrees(const graph& g)

noexcept
{

using vd = typename graph :: vertex_descriptor;

std::vector <int > v(boost:: num_vertices(g));
const auto vip = vertices(g);
std:: transform(vip.first , vip.second , std::begin(v),

[&g](const vd& d) { return out_degree(d, g); });
return v;

}

Listing 3.1: Get the vertices’ out degrees

The structure of this algorithm is similar to get_vertex_descriptors (algo-
rithm 2.13), except that the out degrees from the vertex descriptors are stored.
The out degree of a vertex iterator is obtained from the function out_degree
(not boost::out_degree !).

Albeit that the K2 graph and the two-state Markov chain are rather sim-
ple, we can use it to demonstrate get_vertex_out_degrees on, as shown in
algorithm 3.2.

#include "create_k2_graph.h"
#include "create_markov_chain.h"
#include "get_vertex_out_degrees.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_vertex_out_degrees)
{

const auto g = create_k2_graph ();
const std::vector <int > expected_out_degrees_g{ 1, 1 };
const std::vector <int > vertex_out_degrees_g{

get_vertex_out_degrees(g) };
BOOST_CHECK(expected_out_degrees_g == vertex_out_degrees_g

);

const auto h = create_markov_chain ();
const std::vector <int > expected_out_degrees_h{ 2, 2 };
const std::vector <int > vertex_out_degrees_h{

get_vertex_out_degrees(h) };
BOOST_CHECK(expected_out_degrees_h == vertex_out_degrees_h

);
}

Listing 3.2: Demonstration of the get_vertex_out_degrees function

3.2. △ IS THERE AN EDGE BETWEEN TWO VERTICES? 45

It is expected that K2 has one out-degree for every vertex, where the two-
state Markov chain is expected to have two out-degrees per vertex.

3.2 △ Is there an edge between two vertices?

If you have two vertex descriptors, you can check if these are connected by an
edge:

#include <boost/graph/adjacency_list.hpp >
#include <boost/graph/graph_traits.hpp >

template <typename graph >
bool has_edge_between_vertices(

const typename boost:: graph_traits <graph >::
vertex_descriptor& vd_1 ,

const typename boost:: graph_traits <graph >::
vertex_descriptor& vd_2 ,

const graph& g) noexcept
{

return edge(vd_1 , vd_2 , g).second;
}

Listing 3.3: Check if there exists an edge between two vertices

This code uses the function edge (not boost::edge): it returns a pair consist-
ing of an edge descriptor and a boolean indicating if it is a valid edge descriptor.
The boolean will be true if there exists an edge between the two vertices and
false if not.

The demo shows that there is an edge between the two vertices of a K2 graph,
but there are no self-loops (edges that original and end at the same vertex).

#include "create_k2_graph.h"
#include "has_edge_between_vertices.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_has_edge_between_vertices)
{

const auto g = create_k2_graph ();
const auto vd_1 = *vertices(g).first;
const auto vd_2 = *(++ vertices(g).first);
BOOST_CHECK(has_edge_between_vertices(vd_1 , vd_2 , g));
BOOST_CHECK (! has_edge_between_vertices(vd_1 , vd_1 , g));

}

Listing 3.4: Demonstration of the has_edge_between_vertices function

46 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

3.3 △ Get the edge between two vertices

If you have two vertex descriptors, you can use these to find the edge between
them.

#include <boost/graph/adjacency_list.hpp >

template <typename graph >
typename boost :: graph_traits <graph >:: edge_descriptor

get_edge_between_vertices(
const typename boost:: graph_traits <graph >::

vertex_descriptor& vd_from ,
const typename boost:: graph_traits <graph >::

vertex_descriptor& vd_to ,
const graph& g)

{
const auto er = edge(vd_from , vd_to , g);
if (!er.second) {

std:: stringstream msg;
msg << __func__ << ": "

<< "no edge between these vertices";
throw std:: invalid_argument(msg.str());

}
return er.first;

}

Listing 3.5: Get the edge between two vertices

This code does assume that there is an edge between the two vertices.
The demo shows how to get the edge between two vertices, deleting it, and

checking for success.

#include "create_k2_graph.h"
#include "get_edge_between_vertices.h"
#include "has_edge_between_vertices.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_edge_between_vertices)
{

auto g = create_k2_graph ();
const auto vd_1 = *vertices(g).first;
const auto vd_2 = *(++ vertices(g).first);
BOOST_CHECK(has_edge_between_vertices(vd_1 , vd_2 , g));
const auto ed = get_edge_between_vertices(vd_1 , vd_2 , g);
boost:: remove_edge(ed, g);
BOOST_CHECK(boost:: num_edges(g) == 0);

}

Listing 3.6: Demonstration of the get_edge_between_vertices function

3.4. △△ CREATE A DIRECT-NEIGHBOUR SUBGRAPH FROM A VERTEX DESCRIPTOR47

3.4 △△ Create a direct-neighbour subgraph from
a vertex descriptor

Suppose you have a vertex of interest its vertex descriptor. Let’s say you want
to get a subgraph of that vertex and its direct neighbours only. This means
that all vertices of that subgraph are adjacent vertices and that the edges go
either from focal vertex to its neighbours, or from adjacent vertex to adjacent
neighbour.

Here is the create_direct_neighbour_subgraph code:

#include <boost/graph/adjacency_list.hpp >
#include <map >

template <typename graph , typename vertex_descriptor >
graph create_direct_neighbour_subgraph(

const vertex_descriptor& vd, const graph& g)
{

graph h;

std::map <vertex_descriptor , vertex_descriptor > m;
{

const auto vd_h = boost:: add_vertex(h);
m.insert(std:: make_pair(vd , vd_h));

}
// Copy vertices
{

const auto vdsi = boost:: adjacent_vertices(vd, g);
for (auto i = vdsi.first; i != vdsi.second; ++i) {

if (m.find(*i) == m.end()) {
const auto vd_h = boost:: add_vertex(h);
m.insert(std:: make_pair (*i, vd_h));

}
}

}
// Copy edges
{

const auto eip = edges(g);
const auto j = eip.second;
for (auto i = eip.first; i != j; ++i) {

const auto vd_from = source (*i, g);
const auto vd_to = target (*i, g);
if (m.find(vd_from) == std::end(m))

continue;
if (m.find(vd_to) == std::end(m))

continue;
boost:: add_edge(m[vd_from], m[vd_to], h);

}
}
return h;

48 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

}

Listing 3.7: Get the direct-neighbour subgraph from a vertex descriptor

This demonstration code shows that the direct-neighbour graph of each ver-
tex of a K2 graphs is ... a K2 graph!

#include "create_direct_neighbour_subgraph.h"
#include "create_k2_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_direct_neighbour_subgraph)
{

const auto g = create_k2_graph ();
const auto vip = vertices(g);
const auto j = vip.second;
for (auto i = vip.first; i != j; ++i) {

const auto h = create_direct_neighbour_subgraph (*i, g);
BOOST_CHECK(boost:: num_vertices(h) == 2);
BOOST_CHECK(boost:: num_edges(h) == 1);

}
}

Listing 3.8: Demo of the create_direct_neighbour_subgraph function

Note that this algorithm works on both undirected and directional graphs.
If the graph is directional, only the out edges will be copied. To also copy the
vertices connected with inward edges, use 3.5

3.5 △△ Create a direct-neighbour subgraph from
a vertex descriptor including inward edges

Too bad, this algorithm does not work yet.

#include <boost/graph/adjacency_list.hpp >
#include <unordered_map >
#include <vector >

template <typename graph >
graph create_direct_neighbour_subgraph_including_in_edges(

const typename graph:: vertex_descriptor& vd , const graph&
g)

{
using vertex_descriptor = typename graph::

vertex_descriptor;
using edge_descriptor = typename graph:: edge_descriptor;
using vpair = std::pair <vertex_descriptor ,

vertex_descriptor >;

std::vector <vpair > conn_edges;

3.6. △△ CREATING ALL DIRECT-NEIGHBOUR SUBGRAPHS FROM A GRAPH WITHOUT PROPERTIES49

std:: unordered_map <vertex_descriptor , vertex_descriptor > m
;

vertex_descriptor vd_h = 0;
m.insert(std:: make_pair(vd , vd_h ++));

for (const edge_descriptor ed : boost:: make_iterator_range
(edges(g))) {

const auto vd_from = source(ed, g);
const auto vd_to = target(ed, g);
if (vd == vd_from) {

conn_edges.emplace_back(vd_from , vd_to);
m.insert(std:: make_pair(vd_to , vd_h ++));

}
if (vd == vd_to) {

conn_edges.emplace_back(vd_from , vd_to);
m.insert(std:: make_pair(vd_from , vd_h ++));

}
}

for (vpair& vp : conn_edges) {
vp.first = m[vp.first];
vp.second = m[vp.second];

}

return graph(conn_edges.begin (), conn_edges.end(), m.size
());

}

Listing 3.9: Get the direct-neighbour subgraph from a vertex descriptor

3.6 △△ Creating all direct-neighbour subgraphs
from a graph without properties

Using the previous function, it is easy to create all direct-neighbour subgraphs
from a graph without properties:

#include "create_direct_neighbour_subgraph.h"
#include <vector >

template <typename graph >
std::vector <graph > create_all_direct_neighbour_subgraphs(

const graph& g) noexcept
{

using vd = typename graph :: vertex_descriptor;

std::vector <graph > v(boost :: num_vertices(g));
const auto vip = vertices(g);

50 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

std:: transform(vip.first , vip.second , std::begin(v),
[&g](const vd& d) { return

create_direct_neighbour_subgraph(d, g); });
return v;

}

Listing 3.10: Create all direct-neighbour subgraphs from a graph without
properties

This demonstration code shows that all two direct-neighbour graphs of a K2

graphs are ... K2 graphs!

#include "create_all_direct_neighbour_subgraphs.h"
#include "create_k2_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_all_direct_neighbour_subgraphs)

{
const auto v = create_all_direct_neighbour_subgraphs(

create_k2_graph ());
BOOST_CHECK(v.size() == 2);
for (const auto g : v) {

BOOST_CHECK(boost:: num_vertices(g) == 2);
BOOST_CHECK(boost:: num_edges(g) == 1);

}
}

Listing 3.11: Demo of the create_all_direct_neighbour_subgraphs function

3.6.1 △ Are two graphs isomorphic?
You may want to check if two graphs are isomorphic. That is: if they have the
same shape.

#include <boost/graph/isomorphism.hpp >

template <typename graph1 , typename graph2 >
bool is_isomorphic(const graph1 g, const graph2 h) noexcept
{

return boost:: isomorphism(g, h);
}

Listing 3.12: Check if two graphs are isomorphic

This demonstration code shows that a K3 graph is not equivalent to a 3-
vertices path graph:

#include "create_k3_graph.h"
#include "create_path_graph.h"
#include "is_isomorphic.h"

3.7. △△ COUNT THE NUMBER OF CONNECTED COMPONENTS IN AN DIRECTED GRAPH51

Figure 3.1: Example of a directed graph with two components

#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_is_isomorphic)
{

const auto g = create_path_graph (3);
const auto h = create_k3_graph ();
BOOST_CHECK(is_isomorphic(g, g));
BOOST_CHECK (! is_isomorphic(g, h));

}

Listing 3.13: Demo of the is_isomorphic function

3.7 △△ Count the number of connected compo-
nents in an directed graph

A directed graph may consist out of two components, that are connected within
each, but unconnected between them. Take for example, a graph of two isolated
edges, with four vertices.

This algorithm counts the number of connected components:

#include <boost/graph/adjacency_list.hpp >
#include <boost/graph/strong_components.hpp >
#include <vector >

template <typename graph >
int count_directed_graph_connected_components(const graph& g

) noexcept
{

std::vector <int > c(boost:: num_vertices(g));
const int n = boost:: strong_components(g,

boost:: make_iterator_property_map(
std:: begin(c), get(boost:: vertex_index , g)));

return n;

52 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

}

Listing 3.14: Count the number of connected components

The complexity of this algorithm is O(|V |+ |E|).
This demonstration code shows that two solitary edges are correctly counted

as being two components:

#include "add_edge.h"
#include "count_directed_graph_connected_components.h"
#include "create_empty_directed_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_count_directed_graph_connected_components)

{
auto g = create_empty_directed_graph ();
BOOST_CHECK(count_directed_graph_connected_components(g)

== 0);
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
const auto vd_c = boost:: add_vertex(g);
boost:: add_edge(vd_a , vd_b , g);
boost:: add_edge(vd_b , vd_c , g);
boost:: add_edge(vd_c , vd_a , g);
BOOST_CHECK(count_directed_graph_connected_components(g)

== 1);
const auto vd_d = boost:: add_vertex(g);
const auto vd_e = boost:: add_vertex(g);
const auto vd_f = boost:: add_vertex(g);
boost:: add_edge(vd_d , vd_e , g);
boost:: add_edge(vd_e , vd_f , g);
boost:: add_edge(vd_f , vd_d , g);
BOOST_CHECK(count_directed_graph_connected_components(g)

== 2);
}

Listing 3.15: Demo of the count_directed_graph_connected_components
function

3.8 △△ Count the number of connected compo-
nents in an undirected graph

An undirected graph may consist out of two components, that are connect within
each, but unconnected between them. Take for example, a graph of two isolated
edges, with four vertices, as shown in figure 3.3:

This algorithm counts the number of connected components:

3.8. △△ COUNT THE NUMBER OF CONNECTED COMPONENTS IN AN UNDIRECTED GRAPH53

Figure 3.2: Example of an undirected graph with two components

#include <boost/graph/adjacency_list.hpp >
#include <boost/graph/connected_components.hpp >
#include <boost/graph/isomorphism.hpp >
#include <vector >

template <typename graph >
int count_undirected_graph_connected_components(const graph&

g) noexcept
{

std::vector <int > c(boost:: num_vertices(g));
return boost:: connected_components(g,

boost:: make_iterator_property_map(
std:: begin(c), get(boost:: vertex_index , g)));

}

Listing 3.16: Count the number of connected components

The complexity of this algorithm is O(|V |+ |E|).
This demonstration code shows that two solitary edges are correctly counted

as being two components:

#include "add_edge.h"
#include "count_undirected_graph_connected_components.h"
#include "create_empty_undirected_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_count_undirected_graph_connected_components)

{
auto g = create_empty_undirected_graph ();
BOOST_CHECK(count_undirected_graph_connected_components(g)

== 0);
add_edge(g);
BOOST_CHECK(count_undirected_graph_connected_components(g)

== 1);
add_edge(g);
BOOST_CHECK(count_undirected_graph_connected_components(g)

== 2);
}

54 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

Figure 3.3: Example of an undirected graph with two levels

Listing 3.17: Demo of the count_undirected_graph_connected_components
function

3.9 △△ Count the number of levels in an undi-
rected graph

Graphs can have a hierarchical structure. From a starting vertex, the number
of levels can be counted. A graph of one vertex has zero levels. A graph with
one edge has one level. A linear graph of three vertices and two edges has one
or two levels, depending on the starting vertex, as shown in figure 3.3:

This algorithm counts the number of levels in an undirected graph, starting
at a certain vertex.

It does so, by collecting the neighbours of the traversed vertices. Each sweep,
all neighbours of traversed neighbours are added to a set of known vertices. As
long as vertices can be added, the algorithm continues. If no vertices can be
added, the number of level equals the number of sweeps.

#include <boost/graph/adjacency_list.hpp >
#include <set >
#include <vector >

// Collect all neighbours
// If there are no new neighbours , the level is found

template <typename graph >
int count_undirected_graph_levels(

typename boost :: graph_traits <graph >:: vertex_descriptor vd,
const graph& g) noexcept

{
int level = 0;
// This does not work:
// std::set <boost:: graph_traits <graph >:: vertex_descriptor >

s;
std::set <int > s;
s.insert(vd);

3.9. △△ COUNT THE NUMBER OF LEVELS IN AN UNDIRECTED GRAPH55

while (1) {
// How many nodes are known now
const auto sz_before = s.size();

const auto t = s;

for (const auto v : t) {
const auto neighbours = boost :: adjacent_vertices(v, g)

;
for (auto n = neighbours.first; n != neighbours.second

; ++n) {
s.insert (*n);

}
}

// Have new nodes been discovered?
if (s.size() == sz_before)

break;

// Found new nodes , thus an extra level
++level;

}
return level;

}

Listing 3.18: Count the number of levels in an undirected graph

This demonstration code shows the number of levels from a certain vertex,
while adding edges to form a linear graph. The vertex, when still without edges,
has zero levels. After adding one edge, the graph has one level, etc.

#include "add_edge.h"
#include "count_undirected_graph_levels.h"
#include "create_empty_undirected_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_count_undirected_graph_levels)
{

auto g = create_empty_undirected_graph ();
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
const auto vd_c = boost:: add_vertex(g);
const auto vd_d = boost:: add_vertex(g);
BOOST_CHECK(count_undirected_graph_levels(vd_a , g) == 0);
boost:: add_edge(vd_a , vd_b , g);
BOOST_CHECK(count_undirected_graph_levels(vd_a , g) == 1);
boost:: add_edge(vd_b , vd_c , g);
BOOST_CHECK(count_undirected_graph_levels(vd_a , g) == 2);
boost:: add_edge(vd_c , vd_d , g);
BOOST_CHECK(count_undirected_graph_levels(vd_a , g) == 3);

}

56 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

Listing 3.19: Demo of the count_undirected_graph_levels function

3.10 Saving a graph to a .dot file
Graph are easily saved to a file, thanks to Graphviz. Graphviz (short for Graph
Visualization Software) is a package of open-source tools for drawing graphs. It
uses the DOT language for describing graphs, and these are commonly stored
in (plain-text) .dot files (I show .dot file of every non-empty graph created, e.g.
chapters 2.14 and 2.15)

#include <boost/graph/graphviz.hpp >
#include <fstream >

template <typename graph >
void save_graph_to_dot(const graph& g, const std:: string&

filename) noexcept
{

std:: ofstream f(filename);
boost:: write_graphviz(f, g);

}

Listing 3.20: Saving a graph to a .dot file

All the code does is create an std::ofstream (an output-to-file stream) and
use boost::write_graphviz to write the DOT description of our graph to that
stream. Instead of std::ofstream, one could use std::cout (a related output
stream) to display the DOT language on screen directly.

Listing 3.21 shows how to use the save_graph_to_dot function:

#include "create_k2_graph.h"
#include "create_markov_chain.h"
#include "save_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_save_graph_to_dot)
{

const auto g = create_k2_graph ();
save_graph_to_dot(g, "create_k2_graph.dot");

const auto h = create_markov_chain ();
save_graph_to_dot(h, "create_markov_chain.dot");

}

Listing 3.21: Demonstration of the save_graph_to_dot function

When using the save_graph_to_dot function (algorithm 3.20), only the
structure of the graph is saved: all other properties (e.g vertex names, edge
lengths) are not stored.

3.11. LOADING A DIRECTED GRAPH FROM A .DOT 57

3.11 Loading a directed graph from a .dot

When loading a graph from file, one needs to specify a type of graph. In this
example, an directed graph is loaded, as shown in algorithm 3.22:

#include "create_empty_directed_graph.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

boost:: adjacency_list <> load_directed_graph_from_dot(
const std:: string& dot_filename)

{
if (! is_regular_file(dot_filename)) {

std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
std:: ifstream f(dot_filename);
auto g = create_empty_directed_graph ();
boost:: dynamic_properties dp(boost ::

ignore_other_properties);
boost:: read_graphviz(f, g, dp);
return g;

}

Listing 3.22: Loading a directed graph from a .dot file

In this algorithm, first it is checked if the file to load exists, using the
is_regular_file function (algorithm 11.3), after which an std::ifstream is
opened. Then an empty directed graph is created, which saves us writing down
the template arguments explicitly. Then, a boost::dynamic_properties is cre-
ated with the boost::ignore_other_properties in its constructor (using a de-
fault constructor here results in the run-time error property not found: node_id,
see chapter 12.5). From this and the empty graph, boost::read_graphviz is
called to build up the graph.

Listing 3.23 shows how to use the load_directed_graph_from_dot func-
tion:

#include "create_markov_chain.h"
#include "load_directed_graph_from_dot.h"
#include "save_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_load_directed_graph_from_dot)
{

using boost :: num_edges;
using boost :: num_vertices;

58 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

const auto g = create_markov_chain ();
const std:: string filename{ "create_markov_chain.dot" };
save_graph_to_dot(g, filename);
const auto h = load_directed_graph_from_dot(filename);
BOOST_CHECK(num_edges(g) == num_edges(h));
BOOST_CHECK(num_vertices(g) == num_vertices(h));

}

Listing 3.23: Demonstration of the load_directed_graph_from_dot function

This demonstration shows how the Markov chain is created using the create_markov_chain_graph
function (algorithm 2.21), saved and then loaded. The loaded graph is then
checked to be a two-state Markov chain.

3.12 Loading an undirected graph from a .dot file

Loading an undirected graph from a .dot file is very similar to loading a directed
graph from a .dot file, as shown in chapter 3.11. Listing 3.24 show how to do
so:

#include "create_empty_undirected_graph.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS >

load_undirected_graph_from_dot(const std:: string&
dot_filename)

{
if (! is_regular_file(dot_filename)) {

std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
std:: ifstream f(dot_filename);
auto g = create_empty_undirected_graph ();
boost:: dynamic_properties p(boost :: ignore_other_properties

);
boost:: read_graphviz(f, g, p);
return g;

}

Listing 3.24: Loading an undirected graph from a .dot file

The only difference with loading a directed graph, is that the initial empty
graph is undirected instead.

Chapter 3.11 describes the rationale of this function.

3.12. LOADING AN UNDIRECTED GRAPH FROM A .DOT FILE 59

Listing 3.25 shows how to use the load_undirected_graph_from_dot func-
tion:

#include "create_k2_graph.h"
#include "load_undirected_graph_from_dot.h"
#include "save_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_load_undirected_graph_from_dot)
{

using boost :: num_edges;
using boost :: num_vertices;

const auto g = create_k2_graph ();
const std:: string filename{ "create_k2_graph.dot" };
save_graph_to_dot(g, filename);
const auto h = load_undirected_graph_from_dot(filename);
BOOST_CHECK(num_edges(g) == num_edges(h));
BOOST_CHECK(num_vertices(g) == num_vertices(h));

}

Listing 3.25: Demonstration of the load_undirected_graph_from_dot function

This demonstration shows how the K2 graph is created using the create_k2_graph
function (algorithm 2.24), saved and then loaded. The loaded graph is checked
to be a K2 graph.

60 CHAPTER 3. WORKING ON GRAPHS WITHOUT PROPERTIES

Chapter 4

Building graphs with bundled
vertices

Up until now, the graphs created have had edges and vertices without any
properties. In this chapter, graphs will be created, in which the vertices can have
a bundled my_bundled_vertex type 1. The following graphs will be created:

• An empty directed graph that allows for bundled vertices: see chapter 4.2

• An empty undirected graph that allows for bundled vertices: see chapter
4.2

• A two-state Markov chain with bundled vertices: see chapter 4.6

• K2 with bundled vertices: see chapter 4.7

In the process, some basic (sometimes bordering trivial) functions are shown:

• Create the vertex class, called my_bundled_vertex: see chapter 4.1

• Adding a my_bundled_vertex: see chapter 4.4

• Getting the vertices my_bundled_vertex-es: see chapter 4.5

These functions are mostly there for completion and showing which data
types are used.

4.1 Creating the bundled vertex class
Before creating an empty graph with bundled vertices, that bundled vertex class
must be created. In this tutorial, it is called my_bundled_vertex. my_bundled_vertex
is a class that is nonsensical, but it can be replaced by any other class type.

Here I will show the header file of my_bundled_vertex, as the implementa-
tion of it is not important:

1I do not intend to be original in naming my data types

61

62 CHAPTER 4. BUILDING GRAPHS WITH BUNDLED VERTICES

#include <boost/property_map/dynamic_property_map.hpp >
#include <iosfwd >
#include <string >

struct my_bundled_vertex {
explicit my_bundled_vertex(const std:: string& name = "",

const std:: string& description = "", const double x =
0.0,

const double y = 0.0) noexcept;
const std:: string& get_description () const noexcept;
const std:: string& get_name () const noexcept;
double get_x() const noexcept;
double get_y() const noexcept;
std:: string m_name;
std:: string m_description;
double m_x;
double m_y;

};

std:: ostream& operator <<(std:: ostream& os , const
my_bundled_vertex& e) noexcept;

bool operator ==(
const my_bundled_vertex& lhs , const my_bundled_vertex& rhs

) noexcept;
bool operator !=(

const my_bundled_vertex& lhs , const my_bundled_vertex& rhs
) noexcept;

bool operator <(
const my_bundled_vertex& lhs , const my_bundled_vertex& rhs

) noexcept;

Listing 4.1: Declaration of my_bundled_vertex

my_bundled_vertex is a class that has multiple properties:

• It has four public member variables: the double m_x (m_ stands for ’mem-
ber’), the double m_y, the std::string m_name and the std::string
m_description. These variables must be public

• It has a default constructor

• It is copyable

• It is comparable for equality (it has operator==), which is needed for
searching

my_bundled_vertex does not have to have the stream operators defined for
file I/O, as this goes via the public member variables.

4.2. CREATE THE EMPTY DIRECTED GRAPH WITH BUNDLED VERTICES63

4.2 Create the empty directed graph with bun-
dled vertices

#include "my_bundled_vertex.h"
#include <boost/graph/adjacency_list.hpp >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

my_bundled_vertex >
create_empty_directed_bundled_vertices_graph () noexcept
{

return {};
}

Listing 4.2: Creating an empty directed graph with bundled vertices

This graph:

• has its out edges stored in a std::vector (due to the first boost::vecS)

• has its vertices stored in a std::vector (due to the second boost::vecS)

• is directed (due to the boost::directedS)

• The vertices have one property: they have a bundled type, that is of data
type my_bundled_vertex

• The edges and graph have no properties

• Edges are stored in a std::list

The boost::adjacency_list has a new, fourth template argument my_bundled_vertex
.

This can be read as:

vertices have the bundled property my_bundled_vertex

Or simply:

vertices have a bundled type called my_bundled_vertex

4.3 Create the empty undirected graph with bun-
dled vertices

#include "my_bundled_vertex.h"
#include <boost/graph/adjacency_list.hpp >

64 CHAPTER 4. BUILDING GRAPHS WITH BUNDLED VERTICES

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

my_bundled_vertex >
create_empty_undirected_bundled_vertices_graph () noexcept
{

return {};
}

Listing 4.3: Creating an empty undirected graph with bundled vertices

This code is very similar to the code described in chapter 4.2, except that the
directness (the third template argument) is undirected (due to the boost::undirectedS
).

4.4 Add a bundled vertex
Adding a vertex without a name was trivially easy (see chapter 2.5). Adding a
bundled vertex takes slightly more work, as shown by algorithm 4.4:

#include "my_bundled_vertex.h"
#include <boost/graph/adjacency_list.hpp >

template <typename graph , typename bundled_vertex >
typename boost :: graph_traits <graph >:: vertex_descriptor

add_bundled_vertex(
const bundled_vertex& v, graph& g) noexcept

{
static_assert (!std::is_const <graph >::value , "graph cannot

be const");
return boost:: add_vertex(v, g);

}

Listing 4.4: Add a bundled vertex

When having added a new (abstract) vertex to the graph, the vertex de-
scriptor is used to set the my_bundled_vertex in the graph.

4.5 Getting the bundled vertices’ my_vertexes
2

When the vertices of a graph have any bundled my_bundled_vertex, one
can extract these as such:

#include "my_bundled_vertex.h"
#include <boost/graph/adjacency_list.hpp >
#include <boost/graph/graph_traits.hpp >

2the name my_vertexes; is chosen to allows you to replace my_vertex by your favorite
datatype name, although in English the plural of vertex is vertices

4.6. CREATING A TWO-STATE MARKOV CHAIN WITH BUNDLED VERTICES65

#include <boost/graph/properties.hpp >
#include <vector >

template <typename graph >
std::vector <my_bundled_vertex > get_my_bundled_vertexes(const

graph& g) noexcept
{

using vd = typename graph :: vertex_descriptor;

std::vector <my_bundled_vertex > v(boost:: num_vertices(g));
const auto vip = vertices(g);
std:: transform(

vip.first , vip.second , std::begin(v), [&g](const vd& d)
{ return g[d]; });

return v;
}

Listing 4.5: Get the bundled vertices’ my_vertexes

The my_bundled_vertex bundled in each vertex is obtained from a vertex
descriptor and then put into a std::vector .

The order of the my_bundled_vertex objects may be different after saving
and loading. When trying to get the vertices’ my_bundled_vertex from a graph
without these, you will get the error formed reference to void (see chapter
12.1).

4.6 Creating a two-state Markov chain with bun-
dled vertices

4.6.1 Graph
Figure 4.1 shows the graph that will be reproduced:

4.6.2 Function to create such a graph
Here is the code creating a two-state Markov chain with bundled vertices:

#include "add_bundled_vertex.h"
#include "create_empty_directed_bundled_vertices_graph.h"

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

my_bundled_vertex >
create_bundled_vertices_markov_chain () noexcept
{

auto g = create_empty_directed_bundled_vertices_graph ();
const my_bundled_vertex a("Sunny", "Yellow", 1.0, 2.0);
const my_bundled_vertex b("Not rainy", "Not grey", 3.0,

4.0);

66 CHAPTER 4. BUILDING GRAPHS WITH BUNDLED VERTICES

Sunny, Yellow, 1.0, 2.0 Not rainy, Not grey, 3.0, 4.0

Figure 4.1: A two-state Markov chain where the vertices have bundled properties
and the edges have no properties. The vertices’ properties are nonsensical

const auto vd_a = add_bundled_vertex(a, g);
const auto vd_b = add_bundled_vertex(b, g);
boost:: add_edge(vd_a , vd_a , g);
boost:: add_edge(vd_a , vd_b , g);
boost:: add_edge(vd_b , vd_a , g);
boost:: add_edge(vd_b , vd_b , g);
return g;

}

Listing 4.6: Creating the two-state Markov chain as depicted in figure 4.1

4.6.3 Creating such a graph
Here is the demo:

#include "create_bundled_vertices_markov_chain.h"
#include "get_my_bundled_vertex.h"
#include "get_my_bundled_vertexes.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_bundled_vertices_markov_chain)

{
const auto g = create_bundled_vertices_markov_chain ();
const std::vector <my_bundled_vertex > expected{

my_bundled_vertex(
"Sunny",

"
Yellow
",
1.0,
2.0),

my_bundled_vertex("Not rainy", "Not grey", 3.0, 4.0) };

4.7. CREATING K2 WITH BUNDLED VERTICES 67

const auto found = get_my_bundled_vertexes(g);
BOOST_CHECK(expected == found);

}

Listing 4.7: Demo of the create_bundled_vertices_markov_chain function
(algorithm 4.6)

4.6.4 The .dot file produced

digraph G {
0[label="Sunny",comment="Yellow",width=1,height =2];
1[label="Not$$$SPACE$$$rainy",comment="Not$$$SPACE$$$grey",

width=3,height =4];
0->0 ;
0->1 ;
1->0 ;
1->1 ;
}

Listing 4.8: .dot file created from the create_bundled_vertices_markov_chain
function (algorithm 4.6) converted from graph to .dot file using algorithm 5.10

4.6.5 The .svg file produced

4.7 Creating K2 with bundled vertices

4.7.1 Graph

We reproduce the K2 without properties of chapter 2.15, but with our bundled
vertices instead, as show in figure 4.3:

4.7.2 Function to create such a graph

#include "add_bundled_vertex.h"
#include "create_empty_undirected_bundled_vertices_graph.h"

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

my_bundled_vertex >
create_bundled_vertices_k2_graph () noexcept
{

auto g = create_empty_undirected_bundled_vertices_graph ();

const my_bundled_vertex a("Me", "Myself", 1.0, 2.0);
const my_bundled_vertex b("My computer", "Not me", 3.0,

4.0);

68 CHAPTER 4. BUILDING GRAPHS WITH BUNDLED VERTICES

Figure 4.2: .svg file created from the create_bundled_vertices_markov_chain
function (algorithm 4.6) its .dot file, converted from .dot file to .svg using algo-
rithm 11.2

4.7. CREATING K2 WITH BUNDLED VERTICES 69

Me,Myself,1.0,2.0 My computer,Not me,3.0,4.0

Figure 4.3: K2: a fully connected graph with two bundled vertices

const auto vd_a = add_bundled_vertex(a, g);
const auto vd_b = add_bundled_vertex(b, g);
boost:: add_edge(vd_a , vd_b , g);
return g;

}

Listing 4.9: Creating K2 as depicted in figure 4.3

Most of the code is a slight modification of the create_k2_graph function
(algorithm 2.24). In the end, (references to) the my_bundled_vertices are
obtained and set with two bundled my_bundled_vertex objects.

4.7.3 Creating such a graph
Demo:

#include "create_bundled_vertices_k2_graph.h"
#include "has_bundled_vertex_with_my_vertex.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_bundled_vertices_k2_graph)
{

const auto g = create_bundled_vertices_k2_graph ();
BOOST_CHECK(boost :: num_edges(g) == 1);
BOOST_CHECK(boost :: num_vertices(g) == 2);
BOOST_CHECK(has_bundled_vertex_with_my_vertex(

my_bundled_vertex("Me", "Myself", 1.0, 2.0), g));
BOOST_CHECK(has_bundled_vertex_with_my_vertex(

my_bundled_vertex("My computer", "Not me", 3.0, 4.0), g)
);

}

Listing 4.10: Demo of the create_bundled_vertices_k2_graph function
(algorithm 4.9)

70 CHAPTER 4. BUILDING GRAPHS WITH BUNDLED VERTICES

4.7.4 The .dot file produced

graph G {
0[label="Me",comment="Myself",width=1,height =2];
1[label="My$$$SPACE$$$computer",comment="Not$$$SPACE$$$me",

width=3,height =4];
0--1 ;
}

Listing 4.11: .dot file created from the create_bundled_vertices_k2_graph
function (algorithm 4.9) converted from graph to .dot file using algorithm 3.20

4.7.5 The .svg file produced

4.7. CREATING K2 WITH BUNDLED VERTICES 71

Figure 4.4: .svg file created from the create_bundled_vertices_k2_graph func-
tion (algorithm 4.9) its .dot file, converted from .dot file to .svg using algorithm
11.2

72 CHAPTER 4. BUILDING GRAPHS WITH BUNDLED VERTICES

Chapter 5

Working on graphs with
bundled vertices

When using graphs with bundled vertices, their state gives a way to find a vertex
and working with it. This chapter shows some basic operations on graphs with
bundled vertices.

• Check if there exists a vertex with a certain my_bundled_vertex: chapter
5.1

• Find a vertex with a certain my_bundled_vertex: chapter 5.2

• Get a vertex its my_bundled_vertex from its vertex descriptor: chapter
5.3

• Set a vertex its my_bundled_vertex using its vertex descriptor: chapter
5.4

• Setting all vertices their my_bundled_vertex-es: chapter 5.5

• Storing an directed/undirected graph with bundled vertices as a .dot file:
chapter 5.6

• Loading a directed graph with bundled vertices from a .dot file: chapter
5.7

• Loading an undirected directed graph with bundled vertices from a .dot
file: chapter 5.8

5.1 Has a bundled vertex with a my_bundled_vertex
Before modifying our vertices, let’s first determine if we can find a vertex by
its bundled type (my_bundled_vertex) in a graph. After obtain the vertex
iterators, we can dereference each these to obtain the vertex descriptors and
then compare each vertex its my_bundled_vertex with the one desired.

73

74 CHAPTER 5. WORKING ON GRAPHS WITH BUNDLED VERTICES

#include "my_bundled_vertex.h"
#include <boost/graph/properties.hpp >
#include <string >

template <typename graph >
bool has_bundled_vertex_with_my_vertex(

const my_bundled_vertex& v, const graph& g) noexcept
{

using vd = typename graph :: vertex_descriptor;

const auto vip = vertices(g);
return std:: find_if(vip.first , vip.second , [&v, &g](const

vd& d) {
return g[d] == v;

}) != vip.second;
}

Listing 5.1: Find if there is vertex with a certain my_bundled_vertex

This function can be demonstrated as in algorithm 5.2, where a certain
my_bundled_vertex cannot be found in an empty graph. After adding the
desired my_bundled_vertex, it is found.

#include "add_bundled_vertex.h"
#include "create_empty_undirected_bundled_vertices_graph.h"
#include "has_bundled_vertex_with_my_vertex.h"
#include "my_bundled_vertex.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_has_bundled_vertex_with_my_vertex)
{

auto g = create_empty_undirected_bundled_vertices_graph ();
BOOST_CHECK(

!has_bundled_vertex_with_my_vertex(my_bundled_vertex("
Felix"), g));

add_bundled_vertex(my_bundled_vertex("Felix"), g);
BOOST_CHECK(has_bundled_vertex_with_my_vertex(

my_bundled_vertex("Felix"), g));
}

Listing 5.2: Demonstration of the has_bundled_vertex_with_my_vertex
function

Note that this function only finds if there is at least one bundled vertex with
that my_bundled_vertex: it does not tell how many bundled vertices with that
my_bundled_vertex exist in the graph.

5.2. FIND A BUNDLED VERTEX WITH A CERTAIN MY_BUNDLED_VERTEX75

5.2 Find a bundled vertex with a certain my_bundled_vertex
Where STL functions work with iterators, here we obtain a vertex descrip-
tor (see chapter 2.6) to obtain a handle to the desired vertex. Listing 5.3
shows how to obtain a vertex descriptor to the first vertex found with a specific
my_bundled_vertex value.

#include "has_bundled_vertex_with_my_vertex.h"
#include "my_bundled_vertex.h"
#include <boost/graph/graph_traits.hpp >
#include <boost/graph/properties.hpp >
#include <cassert >

template <typename graph , typename bundled_vertex_t >
typename boost :: graph_traits <graph >:: vertex_descriptor
find_first_bundled_vertex_with_my_vertex(

const bundled_vertex_t& v, const graph& g)
{

using vd = typename graph :: vertex_descriptor;
const auto vip = vertices(g);

const auto i = std:: find_if(// Cannot use std::find
vip.first , vip.second , [&v, &g](const vd d) { return g[d

] == v; });
if (i == vip.second) {

std:: stringstream msg;
msg << __func__ << ": "

<< "could not find my_bundled_vertex ’" << v << "’";
throw std:: invalid_argument(msg.str());

}
return *i;

}

Listing 5.3: Find the first vertex with a certain my_bundled_vertex

With the vertex descriptor obtained, one can read and modify the vertex
and the edges surrounding it. Listing 5.4 shows some examples of how to do so.

#include "create_bundled_vertices_k2_graph.h"
#include "find_first_bundled_vertex_with_my_vertex.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_find_first_bundled_vertex_with_my_vertex)

{
const auto g = create_bundled_vertices_k2_graph ();
const auto vd = find_first_bundled_vertex_with_my_vertex(

my_bundled_vertex("Me", "Myself", 1.0, 2.0), g);
BOOST_CHECK(out_degree(vd, g) == 1);
BOOST_CHECK(in_degree(vd, g) == 1);

}

76 CHAPTER 5. WORKING ON GRAPHS WITH BUNDLED VERTICES

Listing 5.4: Demonstration of the
find_first_bundled_vertex_with_my_vertex function

5.3 Get a bundled vertex its my_bundled_vertex

To obtain the my_bundled_vertex from a vertex descriptor is simple:

#include "my_bundled_vertex.h"
#include <boost/graph/graph_traits.hpp >
#include <boost/graph/properties.hpp >

template <typename graph >
auto get_my_bundled_vertex(

const typename boost:: graph_traits <graph >::
vertex_descriptor& vd,

const graph& g) noexcept -> decltype(g[vd])
{

return g[vd];
}

Listing 5.5: Get a bundled vertex its my_vertex from its vertex descriptor

One can just use the graph as a property map and let it be looked-up.
To use get_bundled_vertex_my_vertex, one first needs to obtain a vertex

descriptor. Listing 5.6 shows a simple example.

#include "add_bundled_vertex.h"
#include "create_empty_undirected_bundled_vertices_graph.h"
#include "find_first_bundled_vertex_with_my_vertex.h"
#include "get_my_bundled_vertex.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_my_bundled_vertex)
{

auto g = create_empty_undirected_bundled_vertices_graph ();
const my_bundled_vertex v{ "Dex" };
add_bundled_vertex(v, g);
const auto vd = find_first_bundled_vertex_with_my_vertex(v

, g);
BOOST_CHECK(get_my_bundled_vertex(vd , g) == v);

}

Listing 5.6: Demonstration if the get_bundled_vertex_my_vertex function

5.4. SET A BUNDLED VERTEX ITS MY_VERTEX 77

5.4 Set a bundled vertex its my_vertex

If you know how to get the my_bundled_vertex from a vertex descriptor, setting
it is just as easy, as shown in algorithm 5.7

#include "my_bundled_vertex.h"
#include <boost/graph/graph_traits.hpp >
#include <boost/graph/properties.hpp >

template <typename graph , typename my_bundled_vertex >
void set_my_bundled_vertex(const my_bundled_vertex& v,

const typename boost:: graph_traits <graph >::
vertex_descriptor& vd,

graph& g) noexcept
{

static_assert (!std::is_const <graph >::value , "graph cannot
be const");

g[vd] = v;
}

Listing 5.7: Set a bundled vertex its my_vertex from its vertex descriptor

To use set_bundled_vertex_my_vertex, one first needs to obtain a vertex
descriptor. Listing 5.8 shows a simple example.

#include "add_bundled_vertex.h"
#include "create_empty_undirected_bundled_vertices_graph.h"
#include "find_first_bundled_vertex_with_my_vertex.h"
#include "get_my_bundled_vertex.h"
#include "set_my_bundled_vertex.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_set_my_bundled_vertex)
{

auto g = create_empty_undirected_bundled_vertices_graph ();
const my_bundled_vertex old_name{ "Dex" };
add_bundled_vertex(old_name , g);
const auto vd = find_first_bundled_vertex_with_my_vertex(

old_name , g);
BOOST_CHECK(get_my_bundled_vertex(vd , g) == old_name);
const my_bundled_vertex new_name{ "Diggy" };
set_my_bundled_vertex(new_name , vd, g);
BOOST_CHECK(get_my_bundled_vertex(vd , g) == new_name);

}

Listing 5.8: Demonstration if the set_bundled_vertex_my_vertex function

78 CHAPTER 5. WORKING ON GRAPHS WITH BUNDLED VERTICES

5.5 Setting all bundled vertices’ my_vertex ob-
jects

When the vertices of a graph are my_bundled_vertex objects, one can set these
as such:

#include "my_bundled_vertex.h"
#include <boost/graph/graph_traits.hpp >
#include <boost/graph/properties.hpp >
#include <string >
#include <vector >

template <typename graph , typename my_bundled_vertex >
void set_my_bundled_vertexes(

graph& g, const std::vector <my_bundled_vertex >&
my_vertexes) noexcept

{
static_assert (!std::is_const <graph >::value , "graph cannot

be const");

auto my_vertexes_begin = std:: begin(my_vertexes);
// const auto my_vertexes_end = std::end(my_vertexes);
const auto vip = vertices(g);
const auto j = vip.second;
for (auto i = vip.first; i != j; ++i, ++ my_vertexes_begin)

{
// assert(my_vertexes_begin != my_vertexes_end);
g[*i] = *my_vertexes_begin;

}
}

Listing 5.9: Setting the bundled vertices’ my_bundled_vertex-es

5.6 Storing a graph with bundled vertices as a
.dot

If you used the create_bundled_vertices_k2_graph function (algorithm 4.9
) to produce a K2 graph with vertices associated with my_bundled_vertex
objects, you can store these with algorithm 5.10:

#include "make_bundled_vertices_writer.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

template <typename graph >
void save_bundled_vertices_graph_to_dot(

const graph& g, const std:: string& filename)
{

5.6. STORING A GRAPH WITH BUNDLED VERTICES AS A .DOT 79

std:: ofstream f(filename);
boost:: write_graphviz(f, g, make_bundled_vertices_writer(g

));
}

Listing 5.10: Storing a graph with bundled vertices as a .dot file

This code looks small, because we call the make_bundled_vertices_writer
function, which is shown in algorithm 5.11:

template <typename graph >
inline bundled_vertices_writer <graph >

make_bundled_vertices_writer(
const graph& g)

{
return bundled_vertices_writer <graph >(g);

}

Listing 5.11: The make_bundled_vertices_writer function

Also this function is forwarding the real work to the bundled_vertices_writer,
shown in algorithm 5.12:

#include "graphviz_encode.h"
#include "is_graphviz_friendly.h"
#include <ostream >

template <typename graph >
class bundled_vertices_writer
{
public:

bundled_vertices_writer(graph g)
: m_g{ g }

{
}
template <class vertex_descriptor >
void operator ()(std:: ostream& out , const vertex_descriptor

& vd) const noexcept
{

out << "[label =\"" << graphviz_encode(m_g[vd]. m_name) <<
"\",comment =\""
<< graphviz_encode(m_g[vd]. m_description) << "\",

width=" << m_g[vd].m_x
<< ",height=" << m_g[vd].m_y << "]";

}

private:
graph m_g;

};

Listing 5.12: The bundled_vertices_writer function

80 CHAPTER 5. WORKING ON GRAPHS WITH BUNDLED VERTICES

Here, some interesting things are happening: the writer needs the bundled
property maps to work with and thus copies the whole graph to its internals.
I have chosen to map the my_bundled_vertex member variables to Graphviz
attributes (see chapter A.2 for most Graphviz attributes) as shown in table 5.1:

my_bundled_vertex variable C++ data type Graphviz data type Graphviz attribute
m_name std::string string label
m_description std::string string comment
m_x double double width
m_y double double height

Table 5.1: Mapping of my_bundled_vertex member variable and Graphviz
attributes

Important in this mapping is that the C++ and the Graphviz data types
match. I also chose attributes that matched as closely as possible.

The writer also encodes the std::string of the name and description to a
Graphviz-friendly format. When loading the .dot file again, this will have to be
undone again.

5.7 Loading a directed graph with bundled ver-
tices from a .dot

When loading a graph from file, one needs to specify a type of graph. In
this example, an directed graph with bundled vertices is loaded, as shown in
algorithm 5.13:

#include "create_empty_directed_bundled_vertices_graph.h"
#include "graphviz_decode.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

my_bundled_vertex >
load_directed_bundled_vertices_graph_from_dot(const std::

string& dot_filename)
{

if (! is_regular_file(dot_filename)) {
std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
std:: ifstream f(dot_filename);
auto g = create_empty_directed_bundled_vertices_graph ();

5.7. LOADING A DIRECTED GRAPH WITH BUNDLED VERTICES FROM A .DOT81

boost:: dynamic_properties dp(boost ::
ignore_other_properties);

dp.property("label", get(& my_bundled_vertex ::m_name , g));
dp.property("comment", get(& my_bundled_vertex ::

m_description , g));
dp.property("width", get(& my_bundled_vertex ::m_x , g));
dp.property("height", get(& my_bundled_vertex ::m_y , g));
boost:: read_graphviz(f, g, dp);

// Decode vertices
const auto vip = vertices(g);
const auto j = vip.second;
for (auto i = vip.first; i != j; ++i) {

g[*i]. m_name = graphviz_decode(g[*i]. m_name);
g[*i]. m_description = graphviz_decode(g[*i].

m_description);
}

return g;
}

Listing 5.13: Loading a directed graph with bundled vertices from a .dot file

In this algorithm, first it is checked if the file to load exists. Then an empty
directed graph is created, to save typing the typename explicitly.

Then a boost::dynamic_properties is created with its default constructor,
after which we set it to follow the same mapping as in the previous chapter.
From this and the empty graph, boost::read_graphviz is called to build up
the graph.

At the moment the graph is created, all my_bundled_vertex their names and
description are in a Graphviz-friendly format. By obtaining all vertex iterators
and vertex descriptors, the encoding is made undone.

Listing 5.14 shows how to use the load_directed_bundled_vertices_graph_from_dot
function:

#include "create_bundled_vertices_markov_chain.h"
#include "get_my_bundled_vertexes.h"
#include "load_directed_bundled_vertices_graph_from_dot.h"
#include "save_bundled_vertices_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_load_directed_bundled_vertices_graph_from_dot)

{
using boost :: num_edges;
using boost :: num_vertices;

const auto g = create_bundled_vertices_markov_chain ();

82 CHAPTER 5. WORKING ON GRAPHS WITH BUNDLED VERTICES

const std:: string filename{ "
create_bundled_vertices_markov_chain.dot" };

save_bundled_vertices_graph_to_dot(g, filename);
const auto h =

load_directed_bundled_vertices_graph_from_dot(filename)
;

BOOST_CHECK(num_edges(g) == num_edges(h));
BOOST_CHECK(num_vertices(g) == num_vertices(h));
BOOST_CHECK(get_my_bundled_vertexes(g) ==

get_my_bundled_vertexes(h));
}

Listing 5.14: Demonstration of the
load_directed_bundled_vertices_graph_from_dot function

This demonstration shows how the Markov chain is created using the create_bundled_vertices_markov_chain
function (algorithm 4.6), saved and then loaded. The loaded graph is checked
to be the same as the original.

5.8 Loading an undirected graph with bundled
vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this
example, an undirected graph with bundled vertices is loaded, as shown in
algorithm 5.15:

#include "create_empty_undirected_bundled_vertices_graph.h"
#include "graphviz_decode.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

my_bundled_vertex >
load_undirected_bundled_vertices_graph_from_dot(const std::

string& dot_filename)
{

if (! is_regular_file(dot_filename)) {
std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
std:: ifstream f(dot_filename);
auto g = create_empty_undirected_bundled_vertices_graph ();

boost:: dynamic_properties dp(boost ::
ignore_other_properties);

5.8. LOADING AN UNDIRECTED GRAPH WITH BUNDLED VERTICES FROM A .DOT83

dp.property("label", get(& my_bundled_vertex ::m_name , g));
dp.property("comment", get(& my_bundled_vertex ::

m_description , g));
dp.property("width", get(& my_bundled_vertex ::m_x , g));
dp.property("height", get(& my_bundled_vertex ::m_y , g));
boost:: read_graphviz(f, g, dp);

// Decode vertices
const auto vip = vertices(g);
const auto j = vip.second;
for (auto i = vip.first; i != j; ++i) {

g[*i]. m_name = graphviz_decode(g[*i]. m_name);
g[*i]. m_description = graphviz_decode(g[*i].

m_description);
}

return g;
}

Listing 5.15: Loading an undirected graph with bundled vertices from a .dot file

The only difference with loading a directed graph, is that the initial empty
graph is undirected instead. Chapter 5.7 describes the rationale of this function.

Listing 5.16 shows how to use the load_undirected_bundled_vertices_graph_from_dot
function:

#include "create_bundled_vertices_k2_graph.h"
#include "get_my_bundled_vertexes.h"
#include "load_undirected_bundled_vertices_graph_from_dot.h"
#include "save_bundled_vertices_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_load_undirected_bundled_vertices_graph_from_dot)

{
using boost :: num_edges;
using boost :: num_vertices;

const auto g = create_bundled_vertices_k2_graph ();
const std:: string filename{ "

create_bundled_vertices_k2_graph.dot" };
save_bundled_vertices_graph_to_dot(g, filename);
const auto h =

load_undirected_bundled_vertices_graph_from_dot(
filename);

BOOST_CHECK(get_my_bundled_vertexes(g) ==
get_my_bundled_vertexes(h));

}

Listing 5.16: Demonstration of the
load_undirected_bundled_vertices_graph_from_dot function

84 CHAPTER 5. WORKING ON GRAPHS WITH BUNDLED VERTICES

This demonstration shows how K2 with bundled vertices is created using
the create_bundled_vertices_k2_graph function (algorithm 4.9), saved and
then loaded. The loaded graph is checked to be the same as the original.

Chapter 6

Building graphs with bundled
edges and vertices

Up until now, the graphs created have had only bundled vertices. In this chapter,
graphs will be created, in which both the edges and vertices have a bundled
my_bundled_edge and my_bundled_edge type 1.

• An empty directed graph that allows for bundled edges and vertices: see
chapter 6.2

• An empty undirected graph that allows for bundled edges and vertices:
see chapter 6.3

• A two-state Markov chain with bundled edges and vertices: see chapter
6.6

• K3 with bundled edges and vertices: see chapter 6.7

In the process, some basic (sometimes bordering trivial) functions are shown:

• Creating the my_bundled_edge class: see chapter 6.1

• Adding a bundled my_bundled_edge: see chapter 6.4

These functions are mostly there for completion and showing which data
types are used.

6.1 Creating the bundled edge class

In this example, I create a my_bundled_edge class. Here I will show the header
file of it, as the implementation of it is not important yet.

1I do not intend to be original in naming my data types

85

86CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

#include <iosfwd >
#include <string >

class my_bundled_edge
{
public:

explicit my_bundled_edge(const std:: string& name = "",
const std:: string& description = "", const double width

= 1.0,
const double height = 1.0) noexcept;

const std:: string& get_description () const noexcept;
const std:: string& get_name () const noexcept;
double get_height () const noexcept;
double get_width () const noexcept;

std:: string m_name;
std:: string m_description;
double m_width;
double m_height;

};

std:: ostream& operator <<(std:: ostream& os , const
my_bundled_edge& e) noexcept;

bool operator ==(
const my_bundled_edge& lhs , const my_bundled_edge& rhs)

noexcept;
bool operator !=(

const my_bundled_edge& lhs , const my_bundled_edge& rhs)
noexcept;

bool operator <(const my_bundled_edge& lhs , const
my_bundled_edge& rhs) noexcept;

Listing 6.1: Declaration of my_bundled_edge

my_bundled_edge is a class that has multiple properties: two doubles m_width
(m_ stands for member) and m_height, and two std::strings m_name and m_description.
my_bundled_edge is copyable, but cannot trivially be converted to a std::string.
my_bundled_edge is comparable for equality (that is, operator== is defined).
my_bundled_edge does not have to have the stream operators defined for file
I/O, as this goes via the public member variables.

6.2 Create an empty directed graph with bun-
dled edges and vertices

#include "my_bundled_edge.h"
#include "my_bundled_vertex.h"
#include <boost/graph/adjacency_list.hpp >

6.3. CREATE AN EMPTY UNDIRECTED GRAPH WITH BUNDLED EDGES AND VERTICES87

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

my_bundled_vertex , my_bundled_edge >
create_empty_directed_bundled_edges_and_vertices_graph ()

noexcept
{

return {};
}

Listing 6.2: Creating an empty directed graph with bundled edges and vertices

This code is very similar to the code described in chapter 4.2, except that
there is a new, fifth template argument:

boost::property<boost::edge_bundled_type_t, my_edge>

This can be read as:

edges have the property boost::edge_bundled_type_t, which is of
data type my_bundled_edge

Or simply:

edges have a bundled type called my_bundled_edge

Demo:

#include "
create_empty_directed_bundled_edges_and_vertices_graph.h"

#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_empty_directed_bundled_edges_and_vertices_graph

)
{

const auto g =
create_empty_directed_bundled_edges_and_vertices_graph
();

BOOST_CHECK(boost :: num_edges(g) == 0);
BOOST_CHECK(boost :: num_vertices(g) == 0);

}

Listing 6.3: Demonstration of the
create_empty_directed_bundled_edges_and_vertices_graph function

6.3 Create an empty undirected graph with bun-
dled edges and vertices

88CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

#include "my_bundled_edge.h"
#include "my_bundled_vertex.h"
#include <boost/graph/adjacency_list.hpp >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

my_bundled_vertex , my_bundled_edge >
create_empty_undirected_bundled_edges_and_vertices_graph ()

noexcept
{

return {};
}

Listing 6.4: Creating an empty undirected graph with bundled edges and
vertices

This code is very similar to the code described in chapter 6.2, except that the
directness (the third template argument) is undirected (due to the boost::undirectedS
).

Demo:

#include "
create_empty_undirected_bundled_edges_and_vertices_graph.
h"

#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_empty_undirected_bundled_edges_and_vertices_graph

)
{

const auto g =
create_empty_undirected_bundled_edges_and_vertices_graph
();

BOOST_CHECK(boost:: num_edges(g) == 0);
BOOST_CHECK(boost:: num_vertices(g) == 0);

}

Listing 6.5: Demonstration of the
create_empty_undirected_bundled_edges_and_vertices_graph function

6.4 Add a bundled edge

Adding a bundled edge is very similar to adding an edge without properties
(chapter 2.9).

#include "has_edge_between_vertices.h"
#include "my_bundled_edge.h"
#include <boost/graph/adjacency_list.hpp >

6.4. ADD A BUNDLED EDGE 89

#include <cassert >
#include <sstream >
#include <stdexcept >

template <typename graph , typename bundled_edge >
typename boost :: graph_traits <graph >:: edge_descriptor

add_bundled_edge(
const typename boost:: graph_traits <graph >::

vertex_descriptor& vd_from ,
const typename boost:: graph_traits <graph >::

vertex_descriptor& vd_to ,
const bundled_edge& edge , graph& g)

{
static_assert (!std::is_const <graph >::value , "graph cannot

be const");
if (has_edge_between_vertices(vd_from , vd_to , g)) {

std:: stringstream msg;
msg << __func__ << ": already an edge there";
throw std:: invalid_argument(msg.str());

}
const auto aer = boost:: add_edge(vd_from , vd_to , g);
assert(aer.second);
g[aer.first] = edge;
return aer.first;

}

Listing 6.6: Add a bundled edge

When having added a new (abstract) edge to the graph, the edge descriptor
is used to set the my_edge in the graph.

Here is the demo:

#include "add_bundled_edge.h"
#include "add_bundled_vertex.h"
#include "

create_empty_directed_bundled_edges_and_vertices_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_add_bundled_edge)
{

auto g =
create_empty_directed_bundled_edges_and_vertices_graph
();

const auto vd_from = add_bundled_vertex(my_bundled_vertex(
"From"), g);

const auto vd_to = add_bundled_vertex(my_bundled_vertex("
To"), g);

add_bundled_edge(vd_from , vd_to , my_bundled_edge("X"), g);
BOOST_CHECK(boost :: num_vertices(g) == 2);
BOOST_CHECK(boost :: num_edges(g) == 1);

}

90CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

Listing 6.7: Demo of add_bundled_edge

6.5 Getting the bundled edges my_edges
When the edges of a graph are my_bundled_edge objects, one can extract these
all as such:

#include "my_bundled_edge.h"
#include <boost/graph/adjacency_list.hpp >
#include <vector >

template <typename graph >
std::vector <my_bundled_edge > get_my_bundled_edges(const

graph& g) noexcept
{

using ed = typename boost :: graph_traits <graph >::
edge_descriptor;

std::vector <my_bundled_edge > v(boost:: num_edges(g));
const auto eip = edges(g);
std:: transform(

eip.first , eip.second , std::begin(v), [&g](const ed e) {
return g[e]; });

return v;
}

Listing 6.8: Get the edges’ my_bundled_edges

The my_bundled_edge object associated with the edges are obtained from
the graph its property_map\verb and then put into a std::vector .

Note: the order of the my_bundled_edge objects may be different after sav-
ing and loading.

When trying to get the edges’ my_bundled_edge objects from a graph with-
out bundled edges objects associated, you will get the error formed reference to void
(see chapter 12.1).

6.6 Creating a Markov-chain with bundled edges
and vertices

6.6.1 Graph
Figure 6.1 shows the graph that will be reproduced:

6.6.2 Function to create such a graph
Here is the code creating a two-state Markov chain with bundled edges and
vertices:

6.6. CREATING A MARKOV-CHAIN WITH BUNDLED EDGES AND VERTICES91

Stable,Right, 1.0, 2.0 Not unstable,Not left, 3.0, 4.0

Red,Heat,1,2

Orange,Lose heat,3,4

Yellow cold,Heat,4,5

Green cols,Stay cool,6,7

Figure 6.1: A two-state Markov chain where the edges and vertices have bundled
properties. The edges’ and vertices’ properties are nonsensical

92CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

#include "add_bundled_edge.h"
#include "add_bundled_vertex.h"
#include "

create_empty_directed_bundled_edges_and_vertices_graph.h"
#include <cassert >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

my_bundled_vertex , my_bundled_edge >
create_bundled_edges_and_vertices_markov_chain ()
{

auto g =
create_empty_directed_bundled_edges_and_vertices_graph
();

const auto va = my_bundled_vertex("Stable", "Right", 1.0,
2.0);

const auto vb = my_bundled_vertex("Not unstable", "Not
left", 3.0, 4.0);

const auto vd_a = add_bundled_vertex(va , g);
const auto vd_b = add_bundled_vertex(vb , g);
const auto e_aa = my_bundled_edge("Red", "Heat", 1.0, 2.0)

;
const auto e_ab = my_bundled_edge("Orange", "Lose heat",

3.0, 4.0);
const auto e_ba = my_bundled_edge("Yellow cold", "Heat",

5.0, 6.0);
const auto e_bb = my_bundled_edge("Green cold", "Stay cool

", 7.0, 8.0);
add_bundled_edge(vd_a , vd_a , e_aa , g);
add_bundled_edge(vd_a , vd_b , e_ab , g);
add_bundled_edge(vd_b , vd_a , e_ba , g);
add_bundled_edge(vd_b , vd_b , e_bb , g);
return g;

}

Listing 6.9: Creating the two-state Markov chain as depicted in figure 6.1

6.6.3 Creating such a graph
Here is the demo:

#include "create_bundled_edges_and_vertices_markov_chain.h"
#include "get_my_bundled_edges.h"
#include "my_bundled_vertex.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_bundled_edges_and_vertices_markov_chain)

{

6.6. CREATING A MARKOV-CHAIN WITH BUNDLED EDGES AND VERTICES93

const auto g =
create_bundled_edges_and_vertices_markov_chain ();

const std::vector <my_bundled_edge > edge_my_edges{
get_my_bundled_edges(g) };

const std::vector <my_bundled_edge > expected_my_edges{
my_bundled_edge("Red",

"
Heat
"
,

1.0,

2.0)
,

my_bundled_edge("Orange", "Lose heat", 3.0, 4.0),
my_bundled_edge("Yellow cold", "Heat", 5.0, 6.0),
my_bundled_edge("Green cold", "Stay cool", 7.0, 8.0) };

BOOST_CHECK(edge_my_edges == expected_my_edges);
}

Listing 6.10: Demo of
the create_bundled_edges_and_vertices_markov_chain function (algorithm
6.9)

6.6.4 The .dot file produced

digraph G {
0[label="Stable",comment="Right",width=1,height =2];
1[label="Not$$$SPACE$$$unstable",comment="Not$$$SPACE$$$left

",width=3,height =4];
0->0 [label="Red",comment="Heat",width=1,height =2];
0->1 [label="Orange",comment="Lose$$$SPACE$$$heat",width=3,

height =4];
1->0 [label="Yellow$$$SPACE$$$cold",comment="Heat",width=5,

height =6];
1->1 [label="Green$$$SPACE$$$cold",comment="

Stay$$$SPACE$$$cool",width=7,height =8];
}

Listing 6.11: .dot file created from
the create_bundled_edges_and_vertices_markov_chain function (algorithm
6.9) converted from graph to .dot file using algorithm 3.20

94CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

Figure 6.2: .svg file created from the cre-
ate_bundled_edges_and_vertices_markov_chain function (algorithm 4.6) its
.dot file converted from .dot file to .svg using algorithm 11.2

6.7. CREATING K3 WITH BUNDLED EDGES AND VERTICES 95

Red,Not green,1,2

Oxygen,Air,1,2

Light red,Not dark,3,4
Helium,From tube,3,4

Orange,Orange,5,6

Stable temperature,Here,5,6

Figure 6.3: K3: a fully connected graph with three bundled edges and vertices

6.6.5 The .svg file produced

6.7 Creating K3 with bundled edges and vertices

Instead of using edges with a name, or other properties, here we use a bundled
edge class called my_bundled_edge.

6.7.1 Graph

We reproduce the K3 without properties of chapter 2.16, but with our bundled
edges and vertices instead:

6.7.2 Function to create such a graph

#include "add_bundled_edge.h"
#include "add_bundled_vertex.h"
#include "

create_empty_undirected_bundled_edges_and_vertices_graph.
h"

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

my_bundled_vertex , my_bundled_edge >
create_bundled_edges_and_vertices_k3_graph ()
{

96CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

auto g =
create_empty_undirected_bundled_edges_and_vertices_graph
();

const auto vd_a
= add_bundled_vertex(my_bundled_vertex("Red", "Not green

", 1.0, 2.0), g);
const auto vd_b = add_bundled_vertex(

my_bundled_vertex("Light red", "Not dark", 3.0, 4.0), g)
;

const auto vd_c
= add_bundled_vertex(my_bundled_vertex("Orange", "Orangy

", 5.0, 6.0), g);
add_bundled_edge(vd_a , vd_b , my_bundled_edge("Oxygen", "

Air", 1.0, 2.0), g);
add_bundled_edge(

vd_b , vd_c , my_bundled_edge("Helium", "From tube", 3.0,
4.0), g);

add_bundled_edge(
vd_c , vd_a , my_bundled_edge("Stable temperature", "Here"

, 5.0, 6.0), g);
return g;

}

Listing 6.12: Creating K3 as depicted in figure 6.3

Most of the code is a slight modification of algorithm 2.27. In the end, the
my_edges and my_vertices are obtained as the graph its property_map and
set with the my_bundled_edge and my_bundled_vertex objects.

6.7.3 Creating such a graph

Here is the demo:

#include "create_bundled_edges_and_vertices_k3_graph.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_bundled_edges_and_vertices_k3_graph)

{
auto g = create_bundled_edges_and_vertices_k3_graph ();
BOOST_CHECK(boost:: num_edges(g) == 3);
BOOST_CHECK(boost:: num_vertices(g) == 3);

}

Listing 6.13: Demo of the create_bundled_edges_and_vertices_k3_graph
function (algorithm 6.12)

6.7.4 The .dot file produced

6.7. CREATING K3 WITH BUNDLED EDGES AND VERTICES 97

graph G {
0[label="Red",comment="Not$$$SPACE$$$green",width=1,height

=2];
1[label="Light$$$SPACE$$$red",comment="Not$$$SPACE$$$dark",

width=3,height =4];
2[label="Orange",comment="Orangy",width=5,height =6];
0--1 [label="Oxygen",comment="Air",width=1,height =2];
1--2 [label="Helium",comment="From$$$SPACE$$$tube",width=3,

height =4];
2--0 [label="Stable$$$SPACE$$$temperature",comment="Here",

width=5,height =6];
}

Listing 6.14: .dot file created from
the create_bundled_edges_and_vertices_markov_chain function (algorithm
6.12) converted from graph to .dot file using algorithm 3.20

6.7.5 The .svg file produced

98CHAPTER 6. BUILDING GRAPHS WITH BUNDLED EDGES AND VERTICES

Figure 6.4: .svg file created from the cre-
ate_bundled_edges_and_vertices_k3_graph function (algorithm 4.6) its
.dot file, converted from .dot file to .svg using algorithm 11.2

Chapter 7

Working on graphs with
bundled edges and vertices

7.1 Has a my_bundled_edge

Before modifying our edges, let’s first determine if we can find an edge by its bun-
dled type (my_bundled_edge) in a graph. After obtaining a my_bundled_edge
map, we obtain the edge iterators, dereference these to obtain the edge descrip-
tors and then compare each edge its my_bundled_edge with the one desired.

#include "my_bundled_edge.h"
#include <boost/graph/properties.hpp >

template <typename graph >
bool has_bundled_edge_with_my_edge(

const my_bundled_edge& e, const graph& g) noexcept
{

using ed = typename boost :: graph_traits <graph >::
edge_descriptor;

const auto eip = edges(g);
return std:: find_if(eip.first , eip.second , [&e, &g](const

ed& d) {
return g[d] == e;

}) != eip.second;
}

Listing 7.1: Find if there is a bundled edge with a certain my_bundled_edge

This function can be demonstrated as in algorithm 7.2, where a certain
my_bundled_edge cannot be found in an empty graph. After adding the desired
my_bundled_edge, it is found.

#include "create_bundled_edges_and_vertices_k3_graph.h"
#include "has_bundled_edge_with_my_edge.h"

99

100CHAPTER 7. WORKING ON GRAPHS WITH BUNDLED EDGES AND VERTICES

#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_has_bundled_edge_with_my_edge)
{

auto g = create_bundled_edges_and_vertices_k3_graph ();
BOOST_CHECK(has_bundled_edge_with_my_edge(

my_bundled_edge("Oxygen", "Air", 1.0, 2.0), g));
}

Listing 7.2: Demonstration of the has_bundled_edge_with_my_edge function

Note that this function only finds if there is at least one edge with that
my_bundled_edge: it does not tell how many edges with that my_bundled_edge
exist in the graph.

7.2 Find a my_bundled_edge
Where STL functions work with iterators, here we obtain an edge descriptor (see
chapter 2.12) to obtain a handle to the desired edge. Listing 7.3 shows how to ob-
tain an edge descriptor to the first edge found with a specific my_bundled_edge
value.

#include "has_bundled_edge_with_my_edge.h"
#include "has_custom_edge_with_my_edge.h"
#include "my_bundled_edge.h"
#include <boost/graph/graph_traits.hpp >
#include <cassert >

template <typename graph , typename my_bundled_edge >
typename boost :: graph_traits <graph >:: edge_descriptor
find_first_bundled_edge_with_my_edge(const my_bundled_edge&

e, const graph& g)
{

using ed = typename boost :: graph_traits <graph >::
edge_descriptor;

const auto eip = edges(g);
const auto i = std:: find_if(

eip.first , eip.second , [&e, &g](const ed d) { return g[d
] == e; });

if (i == eip.second) {
std:: stringstream msg;
msg << __func__ << ": "

<< "could not find my_bundled_edge ’" << e << "’";
throw std:: invalid_argument(msg.str());

}
return *i;

}

Listing 7.3: Find the first bundled edge with a certain my_bundled_edge

7.3. GET AN EDGE ITS MY_BUNDLED_EDGE 101

With the edge descriptor obtained, one can read and modify the edge and
the vertices surrounding it. Listing 7.4 shows some examples of how to do so.

#include "create_bundled_edges_and_vertices_k3_graph.h"
#include "find_first_bundled_edge_with_my_edge.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_find_first_bundled_edge_with_my_edge)

{
const auto g = create_bundled_edges_and_vertices_k3_graph

();
const auto ed = find_first_bundled_edge_with_my_edge(

my_bundled_edge("Oxygen", "Air", 1.0, 2.0), g);
BOOST_CHECK(boost :: source(ed , g) != boost:: target(ed, g));

}

Listing 7.4: Demonstration of the find_first_bundled_edge_with_my_edge
function

7.3 Get an edge its my_bundled_edge
To obtain the my_bundled_edge from an edge descriptor, one needs to pull out
the my_bundled_edges map and then look up the my_edge of interest.

#include "my_bundled_edge.h"
#include <boost/graph/graph_traits.hpp >

template <typename graph >
auto get_my_bundled_edge(

const typename boost:: graph_traits <graph >:: edge_descriptor
& ed ,

const graph& g) noexcept -> decltype(g[ed])
{

return g[ed];
}

Listing 7.5: Get a vertex its my_bundled_vertex from its vertex descriptor

To use get_my_bundled_edge, one first needs to obtain an edge descriptor.
Listing 7.6 shows a simple example.

#include "add_bundled_edge.h"
#include "add_bundled_vertex.h"
#include "

create_empty_undirected_bundled_edges_and_vertices_graph.
h"

#include "find_first_bundled_edge_with_my_edge.h"
#include "get_my_bundled_edge.h"
#include <boost/test/unit_test.hpp >

102CHAPTER 7. WORKING ON GRAPHS WITH BUNDLED EDGES AND VERTICES

BOOST_AUTO_TEST_CASE(test_get_my_bundled_edge)
{

auto g =
create_empty_undirected_bundled_edges_and_vertices_graph
();

const my_bundled_edge edge{ "Dex" };
const auto vd_a = add_bundled_vertex(my_bundled_vertex("A"

), g);
const auto vd_b = add_bundled_vertex(my_bundled_vertex("B"

), g);
add_bundled_edge(vd_a , vd_b , edge , g);
const auto ed = find_first_bundled_edge_with_my_edge(edge ,

g);
BOOST_CHECK(get_my_bundled_edge(ed , g) == edge);

}

Listing 7.6: Demonstration if the get_my_bundled_edge function

7.4 Set an edge its my_bundled_edge

If you know how to get the my_bundled_edge from an edge descriptor, setting
it is just as easy, as shown in algorithm 7.7.

#include "my_bundled_edge.h"
#include <boost/graph/properties.hpp >

template <typename graph , typename my_bundled_edge >
void set_my_bundled_edge(const my_bundled_edge& edge ,

const typename boost:: graph_traits <graph >:: edge_descriptor
& ed ,

graph& g) noexcept
{

static_assert (!std::is_const <graph >::value , "graph cannot
be const");

g[ed] = edge;
}

Listing 7.7: Set a bundled edge its my_bundled_edge from its edge descriptor

To use set_bundled_edge_my_edge, one first needs to obtain an edge de-
scriptor. Listing 7.8 shows a simple example.

#include "add_bundled_edge.h"
#include "add_bundled_vertex.h"
#include "

create_empty_undirected_bundled_edges_and_vertices_graph.
h"

#include "find_first_bundled_edge_with_my_edge.h"

7.5. STORING A GRAPH WITH BUNDLED EDGES AND VERTICES AS A .DOT103

#include "get_my_bundled_edge.h"
#include "set_my_bundled_edge.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_set_my_bundled_edge)

{
auto g =

create_empty_undirected_bundled_edges_and_vertices_graph
();

const auto vd_a = add_bundled_vertex(my_bundled_vertex{ "A
" }, g);

const auto vd_b = add_bundled_vertex(my_bundled_vertex{ "B
" }, g);

const my_bundled_edge old_edge{ "Dex" };
add_bundled_edge(vd_a , vd_b , old_edge , g);
const auto vd = find_first_bundled_edge_with_my_edge(

old_edge , g);
BOOST_CHECK(get_my_bundled_edge(vd , g) == old_edge);
const my_bundled_edge new_edge{ "Diggy" };
set_my_bundled_edge(new_edge , vd, g);
BOOST_CHECK(get_my_bundled_edge(vd , g) == new_edge);

}

Listing 7.8: Demonstration if the set_bundled_edge_my_edge function

7.5 Storing a graph with bundled edges and ver-
tices as a .dot

If you used the create_bundled_edges_and_vertices_k3_graph function (al-
gorithm 6.12) to produce a K3 graph with edges and vertices associated with
my_bundled_edge and my_bundled_vertex objects, you can store these my_bundled_edges
and my_bundled_vertex-es additionally with algorithm 7.9:

#include "make_bundled_edges_writer.h"
#include "make_bundled_vertices_writer.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

template <typename graph >
void save_bundled_edges_and_vertices_graph_to_dot(

const graph& g, const std:: string& filename)
{

std:: ofstream f(filename);
boost:: write_graphviz(

f, g, make_bundled_vertices_writer(g),
make_bundled_edges_writer(g));

}

104CHAPTER 7. WORKING ON GRAPHS WITH BUNDLED EDGES AND VERTICES

Listing 7.9: Storing a graph with bundled edges and vertices as a .dot file

7.6 Load a directed graph with bundled edges
and vertices from a .dot file

When loading a graph from file, one needs to specify a type of graph. In this
example, an directed graph with bundled edges and vertices is loaded, as shown
in algorithm 7.10:

#include "
create_empty_directed_bundled_edges_and_vertices_graph.h"

#include "graphviz_decode.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

my_bundled_vertex , my_bundled_edge >
load_directed_bundled_edges_and_vertices_graph_from_dot(

const std:: string& dot_filename)
{

if (! is_regular_file(dot_filename)) {
std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
std:: ifstream f(dot_filename);
auto g =

create_empty_directed_bundled_edges_and_vertices_graph
();

boost:: dynamic_properties dp(boost ::
ignore_other_properties);

dp.property("label", get(& my_bundled_vertex ::m_name , g));
dp.property("comment", get(& my_bundled_vertex ::

m_description , g));
dp.property("width", get(& my_bundled_vertex ::m_x , g));
dp.property("height", get(& my_bundled_vertex ::m_y , g));
dp.property("edge_id", get(& my_bundled_edge ::m_name , g));
dp.property("label", get(& my_bundled_edge ::m_name , g));
dp.property("comment", get(& my_bundled_edge :: m_description

, g));
dp.property("width", get(& my_bundled_edge ::m_width , g));
dp.property("height", get(& my_bundled_edge ::m_height , g));

7.6. LOAD A DIRECTED GRAPH WITH BUNDLED EDGES AND VERTICES FROM A .DOT FILE105

boost:: read_graphviz(f, g, dp);

// Decode vertices
{

const auto vip = vertices(g);
const auto j = vip.second;
for (auto i = vip.first; i != j; ++i) {

g[*i]. m_name = graphviz_decode(g[*i]. m_name);
g[*i]. m_description = graphviz_decode(g[*i].

m_description);
}

}

// Decode edges
{

const auto eip = edges(g);
const auto j = eip.second;

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe -uninitialized"

for (auto i = eip.first; i != j; ++i) {
g[*i]. m_name = graphviz_decode(g[*i]. m_name);
g[*i]. m_description = graphviz_decode(g[*i].

m_description);
}

#pragma GCC diagnostic pop
}

return g;
}

Listing 7.10: Loading a directed graph with bundled edges and vertices from a
.dot file

In this algorithm, first it is checked if the file to load exists. Then an empty
directed graph is created. Next to this, a boost::dynamic_properties is cre-
ated with its default constructor, after which we direct the boost::dynamic_properties
to find a node_id and label in the vertex name map, edge_id and label to
the edge name map. From this and the empty graph, boost::read_graphviz
is called to build up the graph.

Listing 7.11 shows how to use the load_directed_bundled_edges_and_vertices_graph_from_dot
function:

#include "create_bundled_edges_and_vertices_markov_chain.h"
#include "get_sorted_bundled_vertex_my_vertexes.h"
#include "

load_directed_bundled_edges_and_vertices_graph_from_dot.h
"

#include "save_bundled_edges_and_vertices_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

106CHAPTER 7. WORKING ON GRAPHS WITH BUNDLED EDGES AND VERTICES

BOOST_AUTO_TEST_CASE(
test_load_directed_bundled_edges_and_vertices_graph_from_dot

)
{

using boost :: num_edges;
using boost :: num_vertices;

const auto g =
create_bundled_edges_and_vertices_markov_chain ();

const std:: string filename{
"create_bundled_edges_and_vertices_markov_chain.dot"

};
save_bundled_edges_and_vertices_graph_to_dot(g, filename);
const auto h

=
load_directed_bundled_edges_and_vertices_graph_from_dot
(filename);

BOOST_CHECK(num_edges(g) == num_edges(h));
BOOST_CHECK(num_vertices(g) == num_vertices(h));
BOOST_CHECK(get_sorted_bundled_vertex_my_vertexes(g)

== get_sorted_bundled_vertex_my_vertexes(h));
}

Listing 7.11: Demonstration of the
load_directed_bundled_edges_and_vertices_graph_from_dot function

This demonstration shows how the Markov chain is created using the create_bundled_edges_and_vertices_markov_chain
function (algorithm 6.9), saved and then loaded.

7.7 Load an undirected graph with bundled edges
and vertices from a .dot file

When loading a graph from file, one needs to specify a type of graph. In this
example, an undirected graph with bundled edges and vertices is loaded, as
shown in algorithm 7.12:

//#include <fstream >
#include "

create_empty_undirected_bundled_edges_and_vertices_graph.
h"

#include "graphviz_decode.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >

template <class graph >
graph

load_undirected_bundled_edges_and_vertices_graph_from_dot
(

const std:: string& dot_filename)

7.7. LOAD AN UNDIRECTED GRAPH WITH BUNDLED EDGES AND VERTICES FROM A .DOT FILE107

{
if (! is_regular_file(dot_filename)) {

std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
std:: ifstream f(dot_filename);
graph g;

boost:: dynamic_properties dp(boost ::
ignore_other_properties);

dp.property("label", get(& my_bundled_vertex ::m_name , g));
dp.property("comment", get(& my_bundled_vertex ::

m_description , g));
dp.property("width", get(& my_bundled_vertex ::m_x , g));
dp.property("height", get(& my_bundled_vertex ::m_y , g));
dp.property("edge_id", get(& my_bundled_edge ::m_name , g));
dp.property("label", get(& my_bundled_edge ::m_name , g));
dp.property("comment", get(& my_bundled_edge :: m_description

, g));
dp.property("width", get(& my_bundled_edge ::m_width , g));
dp.property("height", get(& my_bundled_edge ::m_height , g));
boost:: read_graphviz(f, g, dp);

// Decode vertices
{

const auto vip = vertices(g);
const auto j = vip.second;
for (auto i = vip.first; i != j; ++i) {

g[*i]. m_name = graphviz_decode(g[*i]. m_name);
g[*i]. m_description = graphviz_decode(g[*i].

m_description);
}

}

// Decode edges
{

const auto eip = edges(g);
const auto j = eip.second;
for (auto i = eip.first; i != j; ++i) {

g[*i]. m_name = graphviz_decode(g[*i]. m_name);
g[*i]. m_description = graphviz_decode(g[*i].

m_description);
}

}

return g;
}

108CHAPTER 7. WORKING ON GRAPHS WITH BUNDLED EDGES AND VERTICES

Listing 7.12: Loading an undirected graph with bundled edges and vertices from
a .dot file

The only difference with loading a directed graph, is that the initial empty
graph is undirected instead.

Chapter 7.6 describes the rationale of this function.
Listing 7.13 shows how to use the load_undirected_bundled_vertices_graph_from_dot

function:

#include "create_bundled_edges_and_vertices_k3_graph.h"
#include "get_sorted_bundled_vertex_my_vertexes.h"
#include "

load_undirected_bundled_edges_and_vertices_graph_from_dot
.h"

#include "save_bundled_edges_and_vertices_graph_to_dot.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_load_undirected_bundled_edges_and_vertices_graph_from_dot

)
{

using boost :: num_edges;
using boost :: num_vertices;

const auto g = create_bundled_edges_and_vertices_k3_graph
();

const std:: string filename{
"create_bundled_edges_and_vertices_k3_graph.dot"

};
save_bundled_edges_and_vertices_graph_to_dot(g, filename);
const auto h

=
load_undirected_bundled_edges_and_vertices_graph_from_dot
<decltype(

create_bundled_edges_and_vertices_k3_graph ())>(
filename);

BOOST_CHECK(num_edges(g) == num_edges(h));
BOOST_CHECK(num_vertices(g) == num_vertices(h));
BOOST_CHECK(get_sorted_bundled_vertex_my_vertexes(g)

== get_sorted_bundled_vertex_my_vertexes(h));
}

Listing 7.13: Demonstration of the
load_undirected_bundled_edges_and_vertices_graph_from_dot function

This demonstration shows how K2 with bundled vertices is created using
the create_bundled_vertices_k2_graph function (algorithm 4.9), saved and
then loaded. The loaded graph is checked to be a graph similar to the original.

Chapter 8

Building graphs with a graph
name

Up until now, the graphs created have had no properties themselves. Sure, the
edges and vertices have had properties, but the graph itself has had none. Until
now.

In this chapter, graphs will be created with a graph name of type std::string

• An empty directed graph with a graph name: see chapter

• An empty undirected graph with a graph name: see chapter

• A two-state Markov chain with a graph name: see chapter

• K3 with a graph name: see chapter

In the process, some basic (sometimes bordering trivial) functions are shown:

• Getting a graph its name: see chapter

• Setting a graph its name: see chapter

8.1 Create an empty directed graph with a graph
name property

Listing 8.1 shows the function to create an empty directed graph with a graph
name.

#include <boost/graph/adjacency_list.hpp >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

boost:: no_property , boost:: no_property ,

109

110 CHAPTER 8. BUILDING GRAPHS WITH A GRAPH NAME

boost::property <boost:: graph_name_t , std::string >>
create_empty_directed_graph_with_graph_name () noexcept
{

return {};
}

Listing 8.1: Creating an empty directed graph with a graph name

This boost::adjacency_list is of the following type:

• the first boost::vecS : select (that is what the S means) that out edges
are stored in a std::vector . This is the default way.

• the second boost::vecS : select that the graph vertices are stored in a
std::vector . This is the default way.

• boost::directedS : select that the graph is directed. This is the default
selectedness

• the first boost::no_property : the vertices have no properties. This is
the default (non-)property

• the second boost::no_property : the vertices have no properties. This
is the default (non-)property

• boost::property<boost::graph_name_t, std::string> : the graph it-
self has a single property: its boost::graph_name has type std::string

Listing 8.2 demonstrates the create_empty_directed_graph_with_graph_name
function.

#include "create_empty_directed_graph_with_graph_name.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_empty_directed_graph_with_graph_name)

{
auto g = create_empty_directed_graph_with_graph_name ();
BOOST_CHECK(boost:: num_edges(g) == 0);
BOOST_CHECK(boost:: num_vertices(g) == 0);

}

Listing 8.2: Demonstration of
create_empty_directed_graph_with_graph_name

8.2 Create an empty undirected graph with a
graph name property

Listing 8.3 shows the function to create an empty undirected graph with a graph
name.

8.3. GET A GRAPH ITS NAME PROPERTY 111

#include <boost/graph/adjacency_list.hpp >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

boost:: no_property , boost:: no_property ,
boost::property <boost:: graph_name_t , std::string >>

create_empty_undirected_graph_with_graph_name () noexcept
{

return {};
}

Listing 8.3: Creating an empty undirected graph with a graph name

This code is very similar to the code described in chapter 8.1, except that the
directness (the third template argument) is undirected (due to the boost::undirectedS
).

Listing 8.4 demonstrates the create_empty_undirected_graph_with_graph_name
function.

#include "create_empty_undirected_graph_with_graph_name.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_empty_undirected_graph_with_graph_name)

{
auto g = create_empty_undirected_graph_with_graph_name ();
BOOST_CHECK(boost :: num_edges(g) == 0);
BOOST_CHECK(boost :: num_vertices(g) == 0);

}

Listing 8.4: Demonstration of
create_empty_undirected_graph_with_graph_name

8.3 Get a graph its name property

#include <boost/graph/properties.hpp >
#include <string >

template <typename graph >
std:: string get_graph_name(const graph& g) noexcept
{

return get_property(g, boost:: graph_name);
}

Listing 8.5: Get a graph its name

Listing 8.6 demonstrates the get_graph_name function.

112 CHAPTER 8. BUILDING GRAPHS WITH A GRAPH NAME

#include "create_empty_directed_graph_with_graph_name.h"
#include "get_graph_name.h"
#include "set_graph_name.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_get_graph_name)
{

auto g = create_empty_directed_graph_with_graph_name ();
const std:: string name{ "Dex" };
set_graph_name(name , g);
BOOST_CHECK(get_graph_name(g) == name);

}

Listing 8.6: Demonstration of get_graph_name

8.4 Set a graph its name property

#include <boost/graph/properties.hpp >
#include <cassert >
#include <string >

template <typename graph >
void set_graph_name(const std:: string& name , graph& g)

noexcept
{

static_assert (!std::is_const <graph >::value , "graph cannot
be const");

get_property(g, boost:: graph_name) = name;
}

Listing 8.7: Set a graph its name

Listing 8.8 demonstrates the set_graph_name function.

#include "create_empty_directed_graph_with_graph_name.h"
#include "get_graph_name.h"
#include "set_graph_name.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_set_graph_name)
{

auto g = create_empty_directed_graph_with_graph_name ();
const std:: string name{ "Dex" };
set_graph_name(name , g);
BOOST_CHECK(get_graph_name(g) == name);

}

Listing 8.8: Demonstration of set_graph_name

8.5. CREATE A DIRECTED GRAPH WITH A GRAPH NAME PROPERTY113

8.5 Create a directed graph with a graph name
property

8.5.1 Graph

See figure 2.3.

8.5.2 Function to create such a graph

Listing 8.9 shows the function to create an empty directed graph with a graph
name.

#include "create_empty_directed_graph_with_graph_name.h"
#include "set_graph_name.h"
#include <cassert >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

boost:: no_property , boost:: no_property ,
boost::property <boost:: graph_name_t , std::string >>

create_markov_chain_with_graph_name () noexcept
{

auto g = create_empty_directed_graph_with_graph_name ();
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
boost:: add_edge(vd_a , vd_a , g);
boost:: add_edge(vd_a , vd_b , g);
boost:: add_edge(vd_b , vd_a , g);
boost:: add_edge(vd_b , vd_b , g);

set_graph_name("Two -state Markov chain", g);
return g;

}

Listing 8.9: Creating a two-state Markov chain with a graph name

8.5.3 Creating such a graph

Listing 8.10 demonstrates the create_markov_chain_with_graph_name func-
tion.

#include "create_markov_chain_with_graph_name.h"
#include "get_graph_name.h"
#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(
test_create_markov_chain_with_graph_name)

{
const auto g = create_markov_chain_with_graph_name ();

114 CHAPTER 8. BUILDING GRAPHS WITH A GRAPH NAME

BOOST_CHECK(boost:: num_vertices(g) == 2);
BOOST_CHECK(boost:: num_edges(g) == 4);
BOOST_CHECK(get_graph_name(g) == "Two -state Markov chain")

;
}

Listing 8.10: Demonstration of create_markov_chain_with_graph_name

8.5.4 The .dot file produced

8.5.5 The .svg file produced

8.6 Create an undirected graph with a graph name
property

8.6.1 Graph
See figure 2.5.

8.6.2 Function to create such a graph
Listing 8.11 shows the function to create K2 graph with a graph name.

#include "create_empty_undirected_graph_with_graph_name.h"

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

boost:: no_property , boost:: no_property ,
boost::property <boost:: graph_name_t , std::string >>

create_k2_graph_with_graph_name () noexcept
{

auto g = create_empty_undirected_graph_with_graph_name ();
const auto vd_a = boost:: add_vertex(g);
const auto vd_b = boost:: add_vertex(g);
boost:: add_edge(vd_a , vd_b , g);
get_property(g, boost:: graph_name) = "K2";

return g;
}

Listing 8.11: Creating a K2 graph with a graph name

8.6.3 Creating such a graph
Listing 8.12 demonstrates the create_k2_graph_with_graph_name function.

#include "create_k2_graph_with_graph_name.h"
#include "get_graph_name.h"

8.6. CREATE AN UNDIRECTED GRAPH WITH A GRAPH NAME PROPERTY115

#include <boost/test/unit_test.hpp >

BOOST_AUTO_TEST_CASE(test_create_k2_graph_with_graph_name)
{

const auto g = create_k2_graph_with_graph_name ();
BOOST_CHECK(boost :: num_vertices(g) == 2);
BOOST_CHECK(boost :: num_edges(g) == 1);
BOOST_CHECK(get_graph_name(g) == "K2");

}

Listing 8.12: Demonstration of create_k2_graph_with_graph_name

8.6.4 The .dot file produced

graph G {
name="K2";
0;
1;
0--1 ;
}

Listing 8.13: .dot file created from the create_k2_graph_with_graph_name
function (algorithm 8.11) converted from graph to .dot file using algorithm 3.20

8.6.5 The .svg file produced

Figure 8.1: .svg file created from the create_k2_graph_with_graph_name
function (algorithm 8.11) its .dot file, converted from .dot file to .svg using
algorithm 11.2

116 CHAPTER 8. BUILDING GRAPHS WITH A GRAPH NAME

Chapter 9

Working on graphs with a
graph name

9.1 Storing a graph with a graph name property
as a .dot file

This works:

#include <boost/graph/graphviz.hpp >
#include <boost/graph/properties.hpp >
#include <fstream >
#include <string >

#include "get_graph_name.h"

template <typename graph >
void save_graph_with_graph_name_to_dot(

const graph& g, const std:: string& filename)
{

std:: ofstream f(filename);
boost:: write_graphviz(f, g, boost :: default_writer (), boost

:: default_writer (),
// Unsure if this results in a graph
// that can be loaded correctly
// from a .dot file
[&g](

std:: ostream& os) { os << "name =\"" << get_graph_name(
g) << "\";\n"; });

}

Listing 9.1: Storing a graph with a graph name as a .dot file

117

118 CHAPTER 9. WORKING ON GRAPHS WITH A GRAPH NAME

9.2 Loading a directed graph with a graph name
property from a .dot file

This will result in a directed graph with a name:

#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
directedS ,

boost:: no_property , boost:: no_property ,
boost::property <boost:: graph_name_t , std::string >>

load_directed_graph_with_graph_name_from_dot(const std::
string& dot_filename)

{
using graph = boost:: adjacency_list <boost::vecS , boost::

vecS ,
boost::directedS , boost:: no_property , boost:: no_property

,
boost::property <boost:: graph_name_t , std::string >>;

if (! is_regular_file(dot_filename)) {
std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}

graph g;

boost:: ref_property_map <graph*, std::string > graph_name{
get_property(

g, boost :: graph_name) };
boost:: dynamic_properties dp{ boost ::

ignore_other_properties };
dp.property("name", graph_name);

std:: ifstream f(dot_filename);
boost:: read_graphviz(f, g, dp);
return g;

}

Listing 9.2: Loading a directed graph with a graph name from a .dot file

9.3. LOADING AN UNDIRECTED GRAPH WITH A GRAPH NAME PROPERTY FROM A .DOT FILE119

9.3 Loading an undirected graph with a graph
name property from a .dot file

This will result in an undirected graph with a name:

#include "create_empty_undirected_graph_with_graph_name.h"
#include "is_regular_file.h"
#include <boost/graph/graphviz.hpp >
#include <fstream >
#include <string >

boost:: adjacency_list <boost::vecS , boost::vecS , boost ::
undirectedS ,

boost:: no_property , boost:: no_property ,
boost::property <boost:: graph_name_t , std::string >>

load_undirected_graph_with_graph_name_from_dot(const std::
string& dot_filename)

{
using graph = boost:: adjacency_list <boost::vecS , boost::

vecS ,
boost:: undirectedS , boost:: no_property , boost::

no_property ,
boost::property <boost:: graph_name_t , std::string >>;

if (! is_regular_file(dot_filename)) {
std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename << "’ not

found";
throw std:: invalid_argument(msg.str());

}
graph g;

boost:: ref_property_map <graph*, std::string > graph_name{
get_property(

g, boost :: graph_name) };
boost:: dynamic_properties dp{ boost ::

ignore_other_properties };
dp.property("name", graph_name);

std:: ifstream f(dot_filename);
boost:: read_graphviz(f, g, dp);
return g;

}

Listing 9.3: Loading an undirected graph with a graph name from a .dot file

120 CHAPTER 9. WORKING ON GRAPHS WITH A GRAPH NAME

Chapter 10

Other graph functions

Some functions that did not fit in.

10.1 Encode a std::string to a Graphviz-friendly
format

You may want to use a label with spaces, comma’s and/or quotes. Saving
and loading these, will result in problem. This function replaces these special
characters by a rare combination of ordinary characters.

#include <boost/algorithm/string/replace.hpp >

std:: string graphviz_encode(std:: string s) noexcept
{

boost:: algorithm :: replace_all(s, ",", "$$$COMMA$$$");
boost:: algorithm :: replace_all(s, " ", "$$$SPACE$$$");
boost:: algorithm :: replace_all(s, "\"", "$$$QUOTE$$$");
return s;

}

Listing 10.1: Encode a std::string to a Graphviz-friendly format

10.2 Decode a std::string from a Graphviz-friendly
format

This function undoes the graphviz_encode function (algorithm 10.1) and thus
converts a Graphviz-friendly std::string to the original human-friendly std::string.

#include <boost/algorithm/string/replace.hpp >

std:: string graphviz_decode(std:: string s) noexcept

121

122 CHAPTER 10. OTHER GRAPH FUNCTIONS

{
boost:: algorithm :: replace_all(s, "$$$COMMA$$$", ",");
boost:: algorithm :: replace_all(s, "$$$SPACE$$$", " ");
boost:: algorithm :: replace_all(s, "$$$QUOTE$$$", "\"");
return s;

}

Listing 10.2: Decode a std::string from a Graphviz-friendly format to a human-
friendly format

10.3 Check if a std::string is Graphviz-friendly
There are pieces where I check if a std::string is Graphviz-friendly. This is done
only where it matters. If it is tested not to matter, is_graphviz_friendly is
absent.

#include "graphviz_encode.h"

bool is_graphviz_friendly(const std:: string& s) noexcept
{

return graphviz_encode(s) == s;
}

Listing 10.3: Check if a std::string is Graphviz-friendly

Chapter 11

Misc functions

These are some function I needed for creating this tutorial. Although they are
not important for working with graphs, I used these heavily. These functions
may be compiler-dependent, platform-dependent and/or there may be superior
alternatives. I just add them for completeness.

11.1 Getting a data type as a std::string

This function will only work under GCC. I found this code at http://stackoverflow.
com/questions/1055452/c-get-name-of-type-in-template. Thanks to m-dudley
(Stack Overflow user page at http://stackoverflow.com/users/111327/m-dudley).

#include <cstdlib >
#include <cxxabi.h>
#include <string >
#include <typeinfo >

template <typename T>
std:: string get_type_name () noexcept
{

std:: string tname = typeid(T).name();
int status = -1;
char* const demangled_name{ abi:: __cxa_demangle(

tname.c_str (), NULL , NULL , &status) };
if (status == 0) {

tname = demangled_name;
std::free(demangled_name);

}
return tname;

}

Listing 11.1: Getting a data type its name as a std::string

123

 http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
 http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
http://stackoverflow.com/users/111327/m-dudley

124 CHAPTER 11. MISC FUNCTIONS

11.2 Convert a .dot to .svg

All illustrations in this tutorial are created by converting .dot to a .svg (Scalable Vector Graphic)
file. This function assumes the program dot is installed, which is part of
Graphviz.

#include "has_dot.h"
#include "is_regular_file.h"
#include "is_valid_dot_file.h"
#include <cassert >
#include <iostream >
#include <sstream >
#include <stdexcept >
#include <string >

void convert_dot_to_svg(
const std:: string& dot_filename , const std:: string&

svg_filename)
{

if (! has_dot ()) {
std:: stringstream msg;
msg << __func__ << ": ’dot’ cannot be found. "

<< "type ’sudo apt install graphviz ’ in the command
line";

throw std:: runtime_error(msg.str());
}
if (! is_valid_dot_file(dot_filename)) {

std:: stringstream msg;
msg << __func__ << ": file ’" << dot_filename

<< "’ is not a valid DOT language";
throw std:: invalid_argument(msg.str());

}
std:: stringstream cmd;
cmd << "dot -Tsvg " << dot_filename << " -o " <<

svg_filename;
const int error{ std:: system(cmd.str().c_str()) };
if (error) {

std::cerr << __func__ << ": warning: command ’" << cmd.
str()

<< "’ resulting in error " << error;
}
if (! is_regular_file(svg_filename)) {

std:: stringstream msg;
msg << __func__ << ": failed to create SVG output file ’

" << svg_filename
<< "’";

throw std:: runtime_error(msg.str());
}

}

11.3. CHECK IF A FILE EXISTS 125

Listing 11.2: Convert a .dot file to a .svg

convert_dot_to_svg makes a system call to the program dot to convert
the .dot file to an .svg file.

11.3 Check if a file exists
Not the most smart way perhaps, but it does only use the STL.

#include <fstream >

bool is_regular_file(const std:: string& filename) noexcept
{

std:: fstream f;
f.open(filename.c_str(), std::ios::in);
return f.is_open ();

}

Listing 11.3: Check if a file exists

126 CHAPTER 11. MISC FUNCTIONS

Chapter 12

Errors

Some common errors.

12.1 Formed reference to void
This compile-time error occurs when you create a graph without a certain prop-
erty, then subsequently reading that property, as in algorithm 12.1:

#include "create_k2_graph.h"
#include "get_vertex_names.h"

void formed_reference_to_void () noexcept
{

get_vertex_names(create_k2_graph ());
}

Listing 12.1: Creating the error ’formed reference to void’

In algorithm 12.1 a graph is created with vertices of no properties. Then the
names of these vertices, which do not exists, are tried to be read. If you want
to read the names of the vertices, supply a graph that has this property.

12.2 No matching function for call to clear_out_edges
This compile-time error occurs when you want to clear the outward edges from
a vertex in an undirected graph.

#include "create_k2_graph.h"

void no_matching_function_for_call_to_clear_out_edges ()
noexcept

{
auto g = create_k2_graph ();
const auto vd = *vertices(g).first;

127

128 CHAPTER 12. ERRORS

boost:: clear_in_edges(vd , g);
}

Listing 12.2: Creating the error ’no matching function for call to
clear_out_edges’

In algorithm 12.2 an undirected graph is created, a vertex descriptor is ob-
tained, then its out edges are tried to be cleared. Either use a directed graph
(which has out edges), or use the boost::clear_vertex function instead.

12.3 No matching function for call to clear_in_edges
See chapter 12.2.

12.4 Undefined reference to boost::detail::graph::read_graphviz_new
You will have to link against the Boost.Graph and Boost.Regex libraries. In Qt
Creator, this is achieved by adding these lines to your Qt Creator project file:

LIBS += -lboost_graph -lboost_regex

12.5 Property not found: node_id
When loading a graph from file (as in chapter 3.12) you will be using boost::read_graphviz
.

boost::read_graphviz needs a third argument, of type boost::dynamic_properties
. When a graph does not have properties, do not use a default constructed ver-
sion, but initialize with boost::ignore_other_properties as a constructor
argument instead. Listing 12.3 shows how to trigger this run-time error.

#include "create_empty_undirected_graph.h"
#include "create_k2_graph.h"
#include "is_regular_file.h"
#include "save_graph_to_dot.h"
#include <boost/graph/graphviz.hpp >
#include <cassert >
#include <fstream >

void property_not_found_node_id () noexcept
{

const std:: string dot_filename{
"property_not_found_node_id.dot"

};
// Create a file
{

const auto g = create_k2_graph ();
save_graph_to_dot(g, dot_filename);

12.6. STREAM ZEROES 129

assert(is_regular_file(dot_filename));
}

// Try to read that file
std:: ifstream f(dot_filename);
auto g = create_empty_undirected_graph ();

// Line below should have been
// boost:: dynamic_properties dp(
// boost:: ignore_other_properties
//);
boost:: dynamic_properties dp; // Error

try {
boost:: read_graphviz(f, g, dp);

} catch (std:: exception &) {
return; // Should get here

}
assert (!"Should not get here");

}

Listing 12.3: Creating the error ’Property not found: node_id’

12.6 Stream zeroes
When loading a graph from a .dot file, in operator>>, I encountered reading
zeroes, where I expected an XML formatted string:

std::istream& ribi::cmap::operator>>(std::istream& is, my_class& any_class)
noexcept

{
std::string s;
is >> s; //s has an XML format
assert(s != 0);
any_class = my_class(s);
return is;

}

This was because I misconfigured the reader. I did (heavily simplified code):

graph load_from_dot(const std::string& dot_filename)
{

std::ifstream f(dot_filename);
graph g;
boost::dynamic_properties dp;
dp.property(TODO}node_id}, get(boost::vertex_custom_type, g));
dp.property(TODO}label}, get(boost::vertex_custom_type, g));

130 CHAPTER 12. ERRORS

boost::read_graphviz(f,g,dp);
return g;

}

Where it should have been:

graph load_from_dot(const std::string& dot_filename)
{

std::ifstream f(dot_filename);
graph g;
boost::dynamic_properties dp(boost::ignore_other_properties);
dp.property(}label}, get(boost::vertex_custom_type, g));
boost::read_graphviz(f,g,dp);
return g;

}

The explanation is that by setting the boost::dynamic_property node_id
to boost::vertex_custom_type, operator>> will receive the node indices.

An alternative, but less clean solution, is to let operator>> ignore the node
indices:

std::istream& ribi::cmap::operator>>(std::istream& is, my_class& any_class)
noexcept

{
std::string s;
is >> s; //s has an XML format
if (!is_xml(s)) { //Ignore node index

any_class_class = my_class();
}
else {

any_class_class = my_class(s);
}
return is;

}

Bibliography

[1] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Li-
brary: User Guide and Reference Manual, The. Pearson Education, 2001.

[2] Bjarne Stroustrup. The C++ Programming Language (3rd edition). 1997.
ISBN 0-201-88954-4.

[3] Scott Meyers. Effective C++: 55 specific ways to improve your programs
and designs. Pearson Education, 2005.

[4] Bjarne Stroustrup. The C++ Programming Language (4th edition). 2013.
ISBN 978-0-321-56384-2.

[5] Herb Sutter and Andrei Alexandrescu. C++ coding standards: 101 rules,
guidelines, and best practices. Pearson Education, 2004.

[6] Jarrod Hollingworth, Bob Swart, and Jamie Allsop. C++ Builder 5 Devel-
oper’s Guide with Cdrom. Sams, 2000.

[7] Marshall P Cline, Greg Lomow, and Mike Girou. C++ FAQs. Pearson
Education, 1998.

[8] Eckel Bruce. Thinking in c++, volume 1. 2002.

[9] John Lakos. Large-scale C++ software design, volume 10. Addison-Wesley
Reading, 1996.

[10] Steve McConnell. Code complete. Pearson Education, 2004.

[11] Jesse Liberty. Sams teach yourself C++ in 24 hours. Sams Publishing,
2001.

131

132 BIBLIOGRAPHY

Appendix A

Appendix

A.1 List of all edge, graph and vertex properties
The following list is obtained from the file boost/graph/properties.hpp.

A.2 Graphviz attributes
List created from www.graphviz.org/content/attrs, where only the attributes
that are supported by all formats are listed:

133

www.graphviz.org/content/attrs

134 APPENDIX A. APPENDIX

Edge Graph Vertex
edge_all graph_all vertex_all

edge_bundle graph_bundle vertex_bundle
edge_capacity graph_name vertex_centrality
edge_centrality graph_visitor vertex_color

edge_color vertex_current_degree
edge_discover_time vertex_degree

edge_finished vertex_discover_time
edge_flow vertex_distance

edge_global vertex_distance2
edge_index vertex_finish_time
edge_local vertex_global

edge_local_index vertex_in_degree
edge_name vertex_index
edge_owner vertex_index1

edge_residual_capacity vertex_index2
edge_reverse vertex_local

edge_underlying vertex_local_index
edge_update vertex_lowpoint
edge_weight vertex_name
edge_weight2 vertex_out_degree

vertex_owner
vertex_potential

vertex_predecessor
vertex_priority
vertex_rank
vertex_root

vertex_underlying
vertex_update

A.2. GRAPHVIZ ATTRIBUTES 135

Edge Graph Vertex
arrowhead _background color
arrowsize bgcolor colorscheme
arrowtail center comment

color charset distortion
colorscheme color fillcolor
comment colorscheme fixedsize
decorate comment fontcolor

dir concentrate fontname
fillcolor fillcolor fontsize
fontcolor fontcolor gradientangle
fontname fontname height
fontsize fontpath image

gradientangle fontsize imagescale
headclip forcelabels label
headlabel gradientangle labelloc
headport imagepath layer

label label margin
labelangle labeljust nojustify

labeldistance labelloc orientation
labelfloat landscape penwidth

labelfontcolor layerlistsep peripheries
labelfontname layers pos
labelfontsize layerselect regular

layer layersep samplepoints
nojustify layout shape
penwidth margin shapefile

pos nodesep sides
style nojustify skew

tailclip orientation sortv
taillabel outputorder style
tailport pack width
weight packmode xlabel
xlabel pad z

page
pagedir

penwidth
quantum

ratio
rotate
size
sortv

splines
style

136 APPENDIX A. APPENDIX

Index

K2, create, 31
K3, create, 33

Acknowledgements, 12
Add a vertex, 21
Add an edge, 25
Add bundled edge, 89
Add bundled vertex, 64
Add vertex, 21
aer_, 26
Algorithms, 11
All edge properties, 133
All graph properties, 133
All vertex properties, 133
assert, 20, 26
auto, 11, 17
Availability, code, 11
Availability, text, 11

boost::add_edge, 25, 26, 30, 32
boost::add_edge result, 26
boost::add_vertex, 21, 30, 32
boost::adjacency_list, 18
boost::adjacency_matrix, 18
boost::degree does not exist, 43
boost::directedS, 19, 63, 110
boost::dynamic_properties, 57, 81,

105, 128
boost::edge does not exist, 45
boost::edge_bundled_type_t, 87
boost::edges does not exist, 27, 28
boost::graph_name, 110
boost::graph_name_t, 110

boost::ignore_other_properties,
57, 128

boost::in_degree does not exist, 43
boost::no_property, 110
boost::num_edges, 20, 21
boost::num_vertices, 20
boost::out_degree does not exist,

43, 44
boost::property, 87, 110
boost::read_graphviz, 57, 81, 105,

128
boost::undirectedS, 19, 64, 88, 111
boost::vecS, 19, 63, 110
boost::vertices does not exist, 23,

24, 28
boost::write_graphviz, 56
bundled_vertices_writer, 80

C++11, 10
C++14, 10
C++17, 11
Coding standard, 10
Coding style, 10
Comments, 10
const, 18
const-correctness, 18
Convert dot to svg, 125
Core C++ Guidelines, 10
Count connected components, 52,

53
Count undirected graph levels, 55
Counting the number of edges, 20
Counting the number of vertices,

19

137

138 INDEX

Create K2, 31
Create K3, 33
Create K3 graph, 34
Create .dot from graph, 56
Create .dot from graph with

bundled edges and
vertices, 103

Create all direct-neighbour
subgraphs, 50

Create an empty graph, 18
Create bundled edges and vertices

K3 graph, 96
Create bundled edges and vertices

Markov chain, 92
Create bundled vertices K2 graph,

69
Create bundled vertices Markov

chain, 66
Create direct-neighbour subgraph,

48
Create direct-neighbour sub-

graph_including_in_edges,
49

Create directed graph, 29
Create directed graph from .dot, 57
Create empty directed bundled

edges and vertices graph,
87

Create empty directed bundled
vertices graph, 63

Create empty directed graph with
graph name, 110

Create empty undirected bundled
edges and vertices graph,
88

Create empty undirected bundled
vertices graph, 64

Create empty undirected graph, 18
Create empty undirected graph

with graph name, 111
Create K2 graph with graph name,

114
Create Markov chain, 29
Create Markov chain with graph

name, 113
Create path graph, 36

Create Petersen graph, 37, 39
Create undirected graph from .dot,

58
Create undirected graph with

bundled edges and
vertices from .dot, 106

Declaration, my_bundled_edge,
86

Declaration, my_bundled_vertex,
62

decltype, 11
degree, 43
Directed graph, 15
Directed graph, create, 29
Download, 11

ed_, 28
edge, 45
Edge descriptor, 28
Edge descriptors, get, 28
Edge iterator, 27
Edge iterator pair, 27
Edge properties, 133
Edge, add, 25
edges, 27, 28
Edges, counting, 20
eip_, 27
Empty graph, create, 18
Explicit namespaces, 11

Find first bundled edge with
my_bundled_edge, 101

Find first bundled vertex with
my_vertex, 75

Formed reference to void, 127

Generic code, 10
Get bundled vertex

my_bundled_vertex, 76
Get bundled vertex my_vertexes,

65
Get edge between vertices, 46
Get edge descriptors, 28
Get edge iterators, 26
Get edge my_bundled_edges, 90

INDEX 139

Get graph name, 111
Get my_bundled_edge, 101
Get n edges, 20
Get n vertices, 19
Get type name, 123
Get vertex descriptors, 24
Get vertex iterators, 23
Get vertex out degrees, 44
Get vertices, 23
Graph properties, 133
Graphviz, 56
graphviz decode, 122
graphviz encode, 121

Has bundled edge with
my_bundled_edge, 99

Has bundled vertex with
my_vertex, 74

Has edge between vertices, 45

in_degree, 43
Is isomorphic, 50
Is regular file, 125
is_graphviz_friendly, 122

License, 11
link, 128
Load directed bundled edges and

vertices graph from dot,
105

Load directed bundled vertices
graph from dot, 81

Load directed custom edges and
vertices graph from dot,
118

Load directed graph from .dot, 57
Load directed graph from dot, 57
Load undirected bundled edges and

vertices graph from dot,
108

Load undirected bundled vertices
graph from dot, 83

Load undirected custom edges and
vertices graph from dot,
119

Load undirected graph from .dot,
58

Load undirected graph from dot,
58

Load undirected graph with
bundled edges and
vertices from .dot, 106

Long function names, 10, 11

m_, 62, 86
make_bundled_vertices_writer,

79
member, 62, 86
my_bundled_edge, 86
my_bundled_edge declaration, 86
my_bundled_edge.h, 86
my_bundled_vertex, 62, 63
my_bundled_vertex.h, 62
my_edge, 87
my_vertex declaration, 62

Namespaces, 11
No matching function for call to

clear_out_edges, 128
No templates, 10
node_id, 128
Number of edges, get, 20
Number of vertices, get, 19

out_degree, 43, 44

Path graph, create, 36
Petersen graph, create, 37
Property not found, 128
Property not found: node_id, 128,

129

read_graphviz_new, 128
read_graphviz_new, undefined

reference, 128
Readability, auto, 11
Readability, explicit namespaces,

11
Readability, for beginners, 9
Readability, function name length,

11
Readability, no comments in code,

10

S, 19, 110

140 INDEX

Save bundled edges and vertices
graph to dot, 104

Save bundled vertices graph to dot,
79

Save graph as .dot, 56
Save graph to dot, 56
Save graph with bundled edges and

vertices as .dot, 103
Save graph with graph name to

dot, 117
Set bundled edge

my_bundled_edge, 102
Set bundled vertex

my_bundled_vertexes,
78

Set graph name, 112
Set vertex my_vertex, 77
static_assert, 22
static_cast, 20
std::copy, 24
std::cout, 56
std::ifstream, 57
std::list, 18
std::ofstream, 56
std::pair, 26

std::vector, 18, 19, 24, 63, 65, 90,
110

STL, 11, 18
Style, coding, 10
Style, tutorial, 9

Tested examples, 11
Tutorial, style, 9

Undefined reference to
read_graphviz_new, 128

Undirected graph, 15
unsigned long, 20

vd, 26
vd_, 22
Vertex descriptor, 22, 25
Vertex descriptors, get, 24
Vertex iterator, 23
Vertex iterator pair, 23
Vertex iterators, get, 23
Vertex properties, 133
Vertex, add, 21
vertices, 23, 24
Vertices, counting, 19
vip_, 23

	Introduction
	Why this tutorial
	Tutorial style
	Coding style
	License
	Feedback
	Acknowledgements
	Outline

	Building graphs without properties
	Creating an empty (directed) graph
	Creating an empty undirected graph
	Counting the number of vertices
	Counting the number of edges
	Adding a vertex
	Vertex descriptors
	Get the vertex iterators
	Get all vertex descriptors
	Add an edge
	boost::add_edge result
	Getting the edge iterators
	Edge descriptors
	Get all edge descriptors
	Creating a directed graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Creating K2, a fully connected undirected graph with two vertices
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	 Creating K3, a fully connected undirected graph with three vertices
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	 Creating a path graph
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	 Creating a Peterson graph
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Working on graphs without properties
	Getting the vertices' out degree
	 Is there an edge between two vertices?
	 Get the edge between two vertices
	 Create a direct-neighbour subgraph from a vertex descriptor
	 Create a direct-neighbour subgraph from a vertex descriptor including inward edges
	 Creating all direct-neighbour subgraphs from a graph without properties
	 Are two graphs isomorphic?

	 Count the number of connected components in an directed graph
	 Count the number of connected components in an undirected graph
	 Count the number of levels in an undirected graph
	Saving a graph to a .dot file
	Loading a directed graph from a .dot
	Loading an undirected graph from a .dot file

	Building graphs with bundled vertices
	Creating the bundled vertex class
	Create the empty directed graph with bundled vertices
	Create the empty undirected graph with bundled vertices
	Add a bundled vertex
	Getting the bundled vertices' my_vertexes
	Creating a two-state Markov chain with bundled vertices
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Creating K2 with bundled vertices
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Working on graphs with bundled vertices
	Has a bundled vertex with a my_bundled_vertex
	Find a bundled vertex with a certain my_bundled_vertex
	Get a bundled vertex its my_bundled_vertex
	Set a bundled vertex its my_vertex
	Setting all bundled vertices' my_vertex objects
	Storing a graph with bundled vertices as a .dot
	Loading a directed graph with bundled vertices from a .dot
	Loading an undirected graph with bundled vertices from a .dot

	Building graphs with bundled edges and vertices
	Creating the bundled edge class
	Create an empty directed graph with bundled edges and vertices
	Create an empty undirected graph with bundled edges and vertices
	Add a bundled edge
	Getting the bundled edges my_edges
	Creating a Markov-chain with bundled edges and vertices
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Creating K3 with bundled edges and vertices
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Working on graphs with bundled edges and vertices
	Has a my_bundled_edge
	Find a my_bundled_edge
	Get an edge its my_bundled_edge
	Set an edge its my_bundled_edge
	Storing a graph with bundled edges and vertices as a .dot
	Load a directed graph with bundled edges and vertices from a .dot file
	Load an undirected graph with bundled edges and vertices from a .dot file

	Building graphs with a graph name
	Create an empty directed graph with a graph name property
	Create an empty undirected graph with a graph name property
	Get a graph its name property
	Set a graph its name property
	Create a directed graph with a graph name property
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Create an undirected graph with a graph name property
	Graph
	Function to create such a graph
	Creating such a graph
	The .dot file produced
	The .svg file produced

	Working on graphs with a graph name
	Storing a graph with a graph name property as a .dot file
	Loading a directed graph with a graph name property from a .dot file
	Loading an undirected graph with a graph name property from a .dot file

	Other graph functions
	Encode a std::string to a Graphviz-friendly format
	Decode a std::string from a Graphviz-friendly format
	Check if a std::string is Graphviz-friendly

	Misc functions
	Getting a data type as a std::string
	Convert a .dot to .svg
	Check if a file exists

	Errors
	Formed reference to void
	No matching function for call to clear_out_edges
	No matching function for call to clear_in_edges
	Undefined reference to boost::detail::graph::read_graphviz_new
	Property not found: node_id
	Stream zeroes

	Appendix
	List of all edge, graph and vertex properties
	Graphviz attributes

